51 research outputs found

    Conditions for the occurrence of acicular ferrite transformation in HSLA steels

    Get PDF
    For the class of steels collectively known as high strength low alloy (HSLA), an acicular ferrite (AF) microstructure produces an excellent combination of strength and toughness. The conditions for the occurrence of the AF transformation are, however, still unclear, especially the effects of austenite deformation and continuous cooling. In this research, a commercial HSLA steel was used and subjected to deformation via plane strain compression with strains ranging from 0 to 0.5 and continuous cooling at rates between 5 and 50 °C s −1 . Based on the results obtained from optical microscopy, scanning electron microscopy and electron backscattering diffraction mapping, the introduction of intragranular nucleation sites and the suppression of bainitic ferrite (BF) laths lengthening were identified as the two key requirements for the occurrence of AF transformation. Austenite deformation is critical to meet these two conditions as it introduces a high density of dislocations that act as intragranular nucleation sites and deformation substructures, which suppress the lengthening of BF laths through the mechanism of mechanical stabilisation of austenite. However, the suppression effect of austenite deformation is only observed under relatively slow cooling rates or high transformation temperatures, i.e., conditions where the driving force for advancing the transformation interface is not sufficient to overcome the austenite deformation substructures

    High resolution structure of an alternate form of the ferric ion binding protein from Haemophilus influenzae

    Get PDF
    The periplasmic iron binding protein of pathogenic Gram-negative bacteria performs an essential role in iron acquisition from transferrin and other iron sources. Structural analysis of this protein from Haemophilus influenzae identified four amino acids that ligand the bound iron: His(9), Glu(57), Tyr(195), and Tyr(196). A phosphate provides an additional ligand, and the presence of a water molecule is required to complete the octahedral geometry for stable iron binding. We report the 1.14-Angstrom resolution crystal structure of the iron-loaded form of the H. influenzae periplasmic ferric ion binding protein (FbpA) mutant H9Q. This protein was produced in the periplasm of Escherichia coli and, after purification and conversion to the apo form, was iron-loaded. H9Q is able to bind ferric iron in an open conformation. A surprising finding in the present high resolution structure is the presence of EDTA located at the previously determined anion ternary binding site, where phosphate is located in the wild type holo and apo structures. EDTA contributes four of the six coordinating ligands for iron, with two Tyr residues, 195 and 196, completing the coordination. This is the first example of a metal binding protein with a bound metal.EDTA complex. The results suggest that FbpA may have the ability to bind and transport iron bound to biological chelators, in addition to bare ferric iron

    Human and mouse essentiality screens as a resource for disease gene discovery

    Get PDF
    The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery. Discovery of causal variants for monogenic disorders has been facilitated by whole exome and genome sequencing, but does not provide a diagnosis for all patients. Here, the authors propose a Full Spectrum of Intolerance to Loss-of-Function (FUSIL) categorization that integrates gene essentiality information to aid disease gene discovery

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Dynamic light scattering study of calmodulin-target peptide complexes.

    Get PDF
    Dynamic light scattering (DLS) has been used to assess the influence of eleven different synthetic peptides, comprising the calmodulin (CaM)-binding domains of various CaM-binding proteins, on the structure of apo-CaM (calcium-free) and Ca(2+)-CaM. Peptides that bind CaM in a 1:1 and 2:1 peptide-to-protein ratio were studied, as were solutions of CaM bound simultaneously to two different peptides. DLS was also used to investigate the effect of Ca(2+) on the N- and C-terminal CaM fragments TR1C and TR2C, and to determine whether the two lobes of CaM interact in solution. The results obtained in this study were comparable to similar solution studies performed for some of these peptides using small-angle x-ray scattering. The addition of Ca(2+) to apo-CaM increased the hydrodynamic radius from 2.5 to 3.0 nm. The peptides studied induced a collapse of the elongated Ca(2+)-CaM structure to a more globular form, decreasing its hydrodynamic radius by an average of 25%. None of the peptides had an effect on the conformation of apo-CaM, indicating that either most of the peptides did not interact with apo-CaM, or if bound, they did not cause a large conformational change. The hydrodynamic radii of TR1C and TR2C CaM fragments were not significantly affected by the addition of Ca(2+). The addition of a target peptide and Ca(2+) to the two fragments of CaM, suggest that a globular complex is forming, as has been seen in nuclear magnetic resonance solution studies. This work demonstrates that dynamic light scattering is an inexpensive and efficient technique for assessing large-scale conformational changes that take place in calmodulin and related proteins upon binding of Ca(2+) ions and peptides, and provides a qualitative picture of how this occurs. This work also illustrates that DLS provides a rapid screening method for identifying new CaM targets

    Development and Expansion of the Natural Resource Data and Information Systems in Support of the Illinois Comprehensive Wildlife Conservation Plan

    Get PDF
    Project Completion Report 2006, Project: T-02-P-001-Final, 1 February 2003 to 30 September 2006Report issued on: November 2006Submitted to Illinois Department of Natural Resource

    Presence of ferric hydroxide clusters in mutants of Haemophilus influenzae ferric ion-binding protein A

    No full text
    The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. In this study, we report the crystal structures of two mutant forms of ferric ion-binding protein A (FbpA) from Haemophilus influenzae with bound multinuclear oxometal clusters. Crystals of site-directed mutants in the metal or anion binding ligands contain protein in the open conformation, and two mutant FbpAs, H9A and N175L, contain different cluster arrangements in the iron-binding pocket. The iron clusters are anchored by binding to the two tyrosine ligands (Tyr195 and Tyr196) positioned at the vertex of the iron-binding pocket but are not coordinated by the other metal binding ligands. Our results suggest that the metal clusters may have formed in situ, suggesting that the mutant FbpAs may serve as a simple model for protein-mediated mineralization

    Structural Basis for Iron Binding and Release by a Novel Class of Periplasmic Iron-Binding Proteins Found in Gram-Negative Pathogens

    Get PDF
    We have determined the 1.35- and 1.45-Å structures, respectively, of closed and open iron-loaded forms of Mannheimia haemolytica ferric ion-binding protein A. M. haemolytica is the causative agent in the economically important and fatal disease of cattle termed shipping fever. The periplasmic iron-binding protein of this gram-negative bacterium, which has homologous counterparts in many other pathogenic species, performs a key role in iron acquisition from mammalian host serum iron transport proteins and is essential for the survival of the pathogen within the host. The ferric (Fe(3+)) ion in the closed structure is bound by a novel asymmetric constellation of four ligands, including a synergistic carbonate anion. The open structure is ligated by three tyrosyl residues and a dynamically disordered solvent-exposed anion. Our results clearly implicate the synergistic anion as the primary mediator of global protein conformation and provide detailed insights into the molecular mechanisms of iron binding and release in the periplasm

    Crystal Structures of Active Fully Assembled Substrate- and Product-Bound Complexes of UDP-N-Acetylmuramic Acid:l-Alanine Ligase (MurC) from Haemophilus influenzae

    No full text
    UDP-N-acetylmuramic acid:l-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-l-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-Å resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the γ-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates
    corecore