27 research outputs found

    Differential Contribution of L-, N-, and P/Q-type Calcium Channels to [Ca2+]i Changes Evoked by Kainate in Hippocampal Neurons

    Get PDF
    Abstract We investigated the contribution of L-, N- and P/Q-type Ca2+ channels to the [Ca2+]i changes, evoked by kainate, in the cell bodies of hippocampal neurons, using a pharmacological approach and Ca2+ imaging. Selective Ca2+ channel blockers, namely nitrendipine, ?-Conotoxin GVIA (?-GVIA) and ?-Agatoxin IVA (?-AgaIVA) were used. The [Ca2+]i changes evoked by kainate presented a high variability, and were abolished by NBQX, a AMPA/kainate receptor antagonist, but the N-methyl-d-aspartate (NMDA) receptor antagonist, D-AP5, was without effect. Each Ca2+ channel blocker caused differential inhibitory effects on [Ca2+]i responses evoked by kainate. We grouped the neurons for each blocker in three subpopulations: (1) neurons with responses below 60% of the control; (2) neurons with responses between 60% and 90% of the control, and (3) neurons with responses above 90% of the control. The inhibition caused by nitrendipine was higher than the inhibition caused by ?-GVIA or ?-AgaIVA. Thus, in the presence of nitrendipine, the percentage of cells with responses below 60% of the control was 41%, whereas in the case of ?-GVIA or ?-AgaIVA the values were 9 or 17%, respectively. The results indicate that hippocampal neurons differ in what concerns their L-, N- and P/Q- type Ca2+ channels activated by stimulation of the AMPA/kainate receptors

    Treatment with an anti-CD11d integrin antibody reduces neuroinflammation and improves outcome in a rat model of repeated concussion

    Get PDF
    BACKGROUND: Concussions account for the majority of traumatic brain injuries (TBI) and can result in cumulative damage, neurodegeneration, and chronic neurological abnormalities. The underlying mechanisms of these detrimental effects remain poorly understood and there are presently no specific treatments for concussions. Neuroinflammation is a major contributor to secondary damage following more severe TBI, and recent findings from our laboratory suggest it may be involved in the cumulative properties of repeated concussion. We previously found that an anti-CD11d monoclonal antibody that blocks the CD11d/CD18 integrin and adhesion molecule interaction following severe experimental TBI reduces neuroinflammation, oxidative activity, and tissue damage, and improves functional recovery. As similar processes may be involved in repeated concussion, here we studied the effects of the anti-CD11d treatment in a rat model of repeated concussion. METHODS: Rats were treated 2 h and 24 h after each of three repeated mild lateral fluid percussion injuries with either the CD11d antibody or an isotype-matched control antibody, 1B7. Injuries were separated by a five-day inter-injury interval. After the final treatment and either an acute (24 to 72 h post-injury) or chronic (8 weeks post-injury) recovery period had elapsed, behavioral and pathological outcomes were examined. RESULTS: The anti-CD11d treatment reduced neutrophil and macrophage levels in the injured brain with concomitant reductions in lipid peroxidation, astrocyte activation, amyloid precursor protein accumulation, and neuronal loss. The anti-CD11d treatment also improved outcome on tasks of cognition, sensorimotor ability, and anxiety. CONCLUSIONS: These findings demonstrate that reducing inflammation after repeated mild brain injury in rats leads to improved behavioral outcomes and that the anti-CD11d treatment may be a viable therapy to improve post-concussion outcomes
    corecore