153 research outputs found

    A Large k Asymptotics of Witten's Invariant of Seifert Manifolds

    Full text link
    We calculate a large kk asymptotic expansion of the exact surgery formula for Witten's SU(2)SU(2) invariant of Seifert manifolds. The contributions of all flat connections are identified. An agreement with the 1-loop formula is checked. A contribution of the irreducible connections appears to contain only a finite number of terms in the asymptotic series. A 2-loop correction to the contribution of the trivial connection is found to be proportional to Casson's invariant.Comment: 51 pages (Some changes are made to the Discussion section. A surgery formula for perturbative corrections to the contribution of the trivial connection is suggested.

    A Contribution of the Trivial Connection to Jones Polynomial and Witten's Invariant of 3d Manifolds I

    Full text link
    We use the Chern-Simons quantum field theory in order to prove a recently conjectured limitation on the 1/K expansion of the Jones polynomial of a knot and its relation to the Alexander polynomial. This limitation allows us to derive a surgery formula for the loop corrections to the contribution of the trivial connection to Witten's invariant. The 2-loop part of this formula coincides with Walker's surgery formula for Casson-Walker invariant. This proves a conjecture that Casson-Walker invariant is a 2-loop correction to the trivial connection contribution to Witten's invariant of a rational homology sphere. A contribution of the trivial connection to Witten's invariant of a manifold with nontrivial rational homology is calculated for the case of Seifert manifolds.Comment: 28 page

    In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-Synuclein within E. coli cells

    Get PDF
    α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution

    Mobile gaming: Industry challenges and policy implications

    Get PDF
    Mobile games are a prime example of a successful mobile application and demonstrate the increasing range of platforms for the media and entertainment industries. Against this convergent background, this paper introduces the basic features of the mobile gaming market and its industrial ecosystem together with its main actors and activities. The focus of the paper lies in the challenges ahead for the evolution of mobile applications into a potentially dominant game platform and the possible disruptions along this road. The deep personal relationships between users and their mobile devices are considered to further explore the link between mobile games, players’ strategies and pending techno-economic developments. The paper concludes with a brief discussion of some policy options to assist with the development of this domain

    High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins

    Get PDF
    Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using δ subunit (20 kDa) of Bacillus subtilis RNA polymerase that has an 81-amino acid disordered part containing various repetitive sequences

    Mechanism of subunit interaction at ketosynthase-dehydratase junctions in trans-AT polyketide synthases

    Get PDF
    Modular polyketide synthases (PKSs) produce numerous structurally complex natural products with diverse applications in medicine and agriculture. They typically consist of several multienzyme subunits that utilize structurally-defined docking domains (DDs) at their N- and C-termini to ensure correct assembly into functional multi-protein complexes. Here we report a fundamentally different mechanism for subunit assembly in trans-AT modular PKSs at the junction between ketosynthase (KS) and dehydratase (DH) domains. This involves direct interaction of a largely unstructured docking domain (DD) at the C-terminus of the KS with the surface of the downstream DH. Acyl transfer assays and mechanism-based cross-linking established that the DD is required for the KS to communicate with the acyl carrier protein appended to the DH. Two distinct regions for binding of the DD to the DH were identified using NMR spectroscopy, carbene foot-printing and mutagenesis, providing a foundation for future elucidation of the molecular basis for interaction specificity

    MDL28170, a Calpain Inhibitor, Affects Trypanosoma cruzi Metacyclogenesis, Ultrastructure and Attachment to Rhodnius prolixus Midgut

    Get PDF
    BACKGROUND: Trypanosoma cruzi is the etiological agent of Chagas' disease. During the parasite life cycle, many molecules are involved in the differentiation process and infectivity. Peptidases are relevant for crucial steps of T. cruzi life cycle; as such, it is conceivable that they may participate in the metacyclogenesis and interaction with the invertebrate host. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we have investigated the effect of the calpain inhibitor MDL28170 on the attachment of T. cruzi epimastigotes to the luminal midgut surface of Rhodnius prolixus, as well as on the metacyclogenesis process and ultrastructure. MDL28170 treatment was capable of significantly reducing the number of bound epimastigotes to the luminal surface midgut of the insect. Once the cross-reactivity of the anti-Dm-calpain was assessed, it was possible to block calpain molecules by the antibody, leading to a significant reduction in the capacity of adhesion to the insect guts by T. cruzi. However, the antibodies were unable to interfere in metacyclogenesis, which was impaired by the calpain inhibitor presenting a significant reduction in the number of metacyclic trypomastigotes. The calpain inhibitor also promoted a direct effect against bloodstream trypomastigotes. Ultrastructural analysis of epimastigotes treated with the calpain inhibitor revealed disorganization in the reservosomes, Golgi and plasma membrane disruption. CONCLUSIONS/SIGNIFICANCE: The presence of calpain and calpain-like molecules in a wide range of organisms suggests that these proteins could be necessary for basic cellular functions. Herein, we demonstrated the effects of MDL28170 in crucial steps of the T. cruzi life cycle, such as attachment to the insect midgut and metacyclogenesis, as well as in parasite viability and morphology. Together with our previous findings, these results help to shed some light on the functions of T. cruzi calpains. Considering the potential roles of these molecules on the interaction with both invertebrate and vertebrate hosts, it is interesting to improve knowledge on these molecules in T. cruzi
    corecore