821 research outputs found

    Bat flies (Diptera: Nycteribiidae and Streblidae) infesting cave-dwelling bats in Gabon: Diversity, dynamics and potential role in Polychromophilus melanipherus transmission

    Full text link
    Background Evidence of haemosporidian infections in bats and bat flies has motivated a growing interest in characterizing their transmission cycles. In Gabon (Central Africa), many caves house massive colonies of bats that are known hosts of Polychromophilus Dionisi parasites, presumably transmitted by blood-sucking bat flies. However, the role of bat flies in bat malaria transmission remains under-documented. Methods An entomological survey was carried out in four caves in Gabon to investigate bat fly diversity, infestation rates and host preferences and to determine their role in Polychromophilus parasite transmission. Bat flies were sampled for 2–4 consecutive nights each month from February to April 2011 (Faucon and Zadie caves) and from May 2012 to April 2013 (Kessipoughou and Djibilong caves). Bat flies isolated from the fur of each captured bat were morphologically identified and screened for infection by haemosporidian parasites using primers targeting the mitochondrial cytochrome b gene. Results Among the 1,154 bats captured and identified as Miniopterus inflatus Thomas (n = 354), Hipposideros caffer Sundevall complex (n = 285), Hipposideros gigas Wagner (n = 317), Rousettus aegyptiacus Geoffroy (n = 157, and Coleura afra Peters (n = 41), 439 (38.0 %) were infested by bat flies. The 1,063 bat flies recovered from bats belonged to five taxa: Nycteribia schmidlii scotti Falcoz, Eucampsipoda africana Theodor, Penicillidia fulvida Bigot, Brachytarsina allaudi Falcoz and Raymondia huberi Frauenfeld group. The mean infestation rate varied significantly according to the bat species (ANOVA, F (4,75) = 13.15, P < 0.001) and a strong association effect between bat fly species and host bat species was observed. Polychromophilus melanipherus Dionisi was mainly detected in N. s. scotti and P. fulvida and less frequently in E. africana, R. huberi group and B. allaudi bat flies. These results suggest that N. s. scotti and P. fulvida could potentially be involved in P. melanipherus transmission among cave-dwelling bats. Sequence analysis revealed eight haplotypes of P. melanipherus. Conclusions This work represents the first documented record of the cave-dwelling bat fly fauna in Gabon and significantly contributes to our understanding of bat fly host-feeding behavior and their respective roles in Polychromophilus transmission. (Résumé d'auteur

    Dynamic Compaction of Biomaterial Powders

    No full text
    Dynamic compaction which requires no external heating for consolidation was used to compact hydroxyapatite. Static precompaction of 3 MPa and dynamic compaction using a projectile velocity of 50 m/s resulted in compacts having a compaction degree of 65% and a tensile strength of 12.4 ± 2.7 MPa This strength was very close to that obtained with sintered compacts one and seemed to indicate that some interparticle boundaries had been created during dynamic compaction

    Zika virus in Gabon (Central Africa) - 2007 : a new threat from Aedes albopictus ?

    Get PDF
    Background Chikungunya and dengue viruses emerged in Gabon in 2007, with large outbreaks primarily affecting the capital Libreville and several northern towns. Both viruses subsequently spread to the south-east of the country, with new outbreaks occurring in 2010. The mosquito species Aedes albopictus, that was known as a secondary vector for both viruses, recently invaded the country and was the primary vector involved in the Gabonese outbreaks. We conducted a retrospective study of human sera and mosquitoes collected in Gabon from 2007 to 2010, in order to identify other circulating arboviruses. Methodology/Principal Findings Sample collections, including 4312 sera from patients presenting with painful febrile disease, and 4665 mosquitoes belonging to 9 species, split into 247 pools (including 137 pools of Aedes albopictus), were screened with molecular biology methods. Five human sera and two Aedes albopictus pools, all sampled in an urban setting during the 2007 outbreak, were positive for the flavivirus Zika (ZIKV). The ratio of Aedes albopictus pools positive for ZIKV was similar to that positive for dengue virus during the concomitant dengue outbreak suggesting similar mosquito infection rates and, presumably, underlying a human ZIKV outbreak. ZIKV sequences from the envelope and NS3 genes were amplified from a human serum sample. Phylogenetic analysis placed the Gabonese ZIKV at a basal position in the African lineage, pointing to ancestral genetic diversification and spread. Conclusions/Significance We provide the first direct evidence of human ZIKV infections in Gabon, and its first occurrence in the Asian tiger mosquito, Aedes albopictus. These data reveal an unusual natural life cycle for this virus, occurring in an urban environment, and potentially representing a new emerging threat due to this novel association with a highly invasive vector whose geographic range is still expanding across the globe. Author Summary Not previously considered an important human arboviral pathogen, the epidemic capacity of Zika virus (ZIKV, a dengue-related flavivirus) was revealed by the Micronesia outbreak in 2007, which affected about 5000 persons. Widely distributed throughout tropical areas of Asia and Africa, ZIKV is transmitted by a broad range of mosquito species, most of which are sylvatic or rural, Aedes aegypti, an anthropophilic and urban species, being considered the main ZIKV epidemic vector. In a context of emerging arbovirus infections (chikungunya (CHIKV) and dengue (DENV)) in Gabon since 2007, we conducted a retrospective study to detect other, related viruses. In samples collected during the concurrent CHIKV/DENV outbreaks that occurred in the capital city in 2007, we detected ZIKV in both humans and mosquitoes, and notably the Asian mosquito Aedes albopictus that recently invaded the country and was the main vector responsible for these outbreaks. We found that the Gabonese ZIKV strain belonged to the African lineage, and phylogenetic analysis suggested ancestral diversification and spread rather than recent introduction. These findings, showing for the first time epidemic ZIKV activity in an urban environment in Central Africa and the presence of ZIKV in the invasive mosquito Aedes albopictus, raise the possibility of a new emerging threat to human health

    Acute dengue virus 2 infection in Gabonese patients is associated with an early innate immune response, including strong interferon alpha production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue is now a leading cause of morbidity and mortality throughout the tropics. We conducted the first <it>ex vivo </it>study of dengue fever (DF) in African patients infected during the first Gabonese dengue virus 2 (DENV-2) outbreak in 2007, in order to investigate cytokine production, including the antiviral cytokine IFN-α, reported to be a potent inhibitor of DENV replication <it>in vitro</it>.</p> <p>Methods</p> <p>Levels of 50 cytokines, chemokines and growth factors were measured in plasma from 36 patients with DENV-2 infection, and in uninfected controls, using Luminex multiplex technology. The results were interpreted according to the day of sampling after symptom onset. PBMC from six patients were also studied for T lymphocyte cell surface marker expression by flow cytometry.</p> <p>Results</p> <p>Acute DENV-2 infection elicited high levels of several pro-inflammatory cytokines (IL-6 and IL-17), chemokines (MIF, RANTES, IP-10 and MCP-1) and growth factors (G-CSF, GM-CSF and VEGF-A). We also observed high levels of IFN-α for the first time in adult DF patients, and CD4+ and CD8+ T cell activation at symptom onset.</p> <p>Conclusion</p> <p>Acute DENV-2 infection in African patients elicits a strong innate response involving IFN-α production, as well as an adaptive immune response.</p

    Complex Radio Spectral Energy Distributions in Luminous and Ultraluminous Infrared Galaxies

    Get PDF
    We use the Expanded Very Large Array to image radio continuum emission from local luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in 1 GHz windows centered at 4.7, 7.2, 29, and 36 GHz. This allows us to probe the integrated radio spectral energy distribution (SED) of the most energetic galaxies in the local universe. The 4-8 GHz flux densities agree well with previous measurements. They yield spectral indices \alpha \approx -0.67 (where F_\nu \propto \nu^\alpha) with \pm 0.15 (1\sigma) scatter, typical of nonthermal (synchrotron) emission from star-forming galaxies. The contrast of our 4-8 GHz data with literature 1.5 and 8.4 GHz flux densities gives further evidence for curvature of the radio SED of U/LIRGs. The SED appears flatter near \sim 1 GHz than near \sim 6 GHz, suggesting significant optical depth effects at the lower frequencies. The high frequency (28-37 GHz) flux densities are low compared to extrapolations from the 4-8 GHz data. We confirm and extend to higher frequency a previously observed deficit of high frequency radio emission for luminous starburst galaxies.Comment: 7 pages, 3 figures, 1 table, accepted for publication in the EVLA Special Issue of ApJ Letter
    • …
    corecore