96 research outputs found

    Measuring the scattering coefficient of turbid media from two-photon microscopy

    No full text
    International audienceIn this paper, we propose a new and simple method based on two-photon excitation fluorescence (TPEF) microscopy to measure the scattering coefficient μs of thick turbid media. We show, from Monte Carlo simulations, that μs can be derived from the axial profile of the ratio of the TPEF signals epi-collected by the confocal and the non-descanned ports of a scanning microscope, independently of the anisotropy factor g and of the absorption coefficient μa of the medium. The method is validated experimentally on tissue-mimicking optical phantoms, and is shown to have potential for imaging the scattering coefficient of heterogeneous medi

    Asymptotic description of solutions of the exterior Navier Stokes problem in a half space

    Full text link
    We consider the problem of a body moving within an incompressible fluid at constant speed parallel to a wall, in an otherwise unbounded domain. This situation is modeled by the incompressible Navier-Stokes equations in an exterior domain in a half space, with appropriate boundary conditions on the wall, the body, and at infinity. We focus on the case where the size of the body is small. We prove in a very general setup that the solution of this problem is unique and we compute a sharp decay rate of the solution far from the moving body and the wall

    Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef

    Get PDF
    Loss of oxygen in the global ocean is accelerating due to climate change and eutrophication, but how acute deoxygenation events affect tropical marine ecosystems remains poorly understood. Here we integrate analyses of coral reef benthic communities with microbial community sequencing to show how a deoxygenation event rapidly altered benthic community composition and microbial assemblages in a shallow tropical reef ecosystem. Conditions associated with the event precipitated coral bleaching and mass mortality, causing a 50% loss of live coral and a shift in the benthic community that persisted a year later. Conversely, the unique taxonomic and functional profile of hypoxia-associated microbes rapidly reverted to a normoxic assemblage one month after the event. The decoupling of ecological trajectories among these major functional groups following an acute event emphasizes the need to incorporate deoxygenation as an emerging stressor into coral reef research and management plans to combat escalating threats to reef persistence

    Housekeeping Mutualisms: Do More Symbionts Facilitate Host Performance?

    Get PDF
    Mutualisms often involve one host supporting multiple symbionts, whose identity, density and intraguild interactions can influence the nature of the mutualism and performance of the host. However, the implications of multiple co-occurring symbionts on services to a host have rarely been quantified. In this study, we quantified effects of decapod symbionts on removal of sediment from their coral host. Our field survey showed that all common symbionts typically occur as pairs and never at greater abundances. Two species, the crab Trapezia serenei and the shrimp Alpheus lottini, were most common and co-occurred more often than expected by chance. We conducted a mesocosm experiment to test for effects of decapod identity and density on sediment removal. Alone, corals removed 10% of sediment, but removal increased to 30% and 48% with the presence of two and four symbionts, respectively. Per-capita effects of symbionts were independent of density and identity. Our results suggest that symbiont density is restricted by intraspecific competition. Thus, increased sediment removal from a coral host can only be achieved by increasing the number of species of symbionts on that coral, even though these species are functionally equivalent. Symbiont diversity plays a key role, not through added functionality but by overcoming density limitation likely imposed by intraspecific mating systems

    Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, M. D., Scott, J. J., Leray, M., Lucey, N., Bravo, L. M. R., Wied, W. L., & Altieri, A. H. Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef. Nature Communications, 12(1), (2021): 4522, https://doi.org/10.1038/s41467-021-24777-3.Loss of oxygen in the global ocean is accelerating due to climate change and eutrophication, but how acute deoxygenation events affect tropical marine ecosystems remains poorly understood. Here we integrate analyses of coral reef benthic communities with microbial community sequencing to show how a deoxygenation event rapidly altered benthic community composition and microbial assemblages in a shallow tropical reef ecosystem. Conditions associated with the event precipitated coral bleaching and mass mortality, causing a 50% loss of live coral and a shift in the benthic community that persisted a year later. Conversely, the unique taxonomic and functional profile of hypoxia-associated microbes rapidly reverted to a normoxic assemblage one month after the event. The decoupling of ecological trajectories among these major functional groups following an acute event emphasizes the need to incorporate deoxygenation as an emerging stressor into coral reef research and management plans to combat escalating threats to reef persistence.M.D.J. was funded by postdoctoral fellow awards from the Smithsonian Institution’s Marine Global Earth Observatory (MarineGEO) and the Smithsonian Tropical Research Institute (STRI); M.L. and N.L. were funded by postdoctoral support from the STRI Office of Fellowships. J.J.S. was funded by a grant from the Gordon and Betty Moore Foundation awarded to STRI and UC Davis (doi:10.37807/GBMF5603). L.M.R.B., W.L.W., and A.H.A. were supported by MarineGEO, a private funder, and STRI funds to A.H.A. Many of the computations were conducted on the Smithsonian High-Performance Cluster (SI/HPC), Smithsonian Institution (doi:10.25572/SIHPC). We thank Rachel Collin for facilities support at the Bocas del Toro Research Station, Plinio Gondola and the research station staff for logistical support, Roman Barco for insight into the functional analyses, Sherly Castro for informative feedback, and Mike Fox for assistance with community analyses. Research permits were provided by the Autoridad Nacional del Ambiente de Panamá. This paper is the result of research funded by the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science Competitive Research Program under award NA18NOS4780170 to A.H.A. and M.D.J. through the University of Florida. This is contribution 257 from the Coastal Hypoxia Research Program and 86 from the Smithsonian’s MarineGEO and Tennenbaum Marine Observatories Network

    Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Leray, M., Wilkins, L. G. E., Apprill, A., Bik, H. M., Clever, F., Connolly, S. R., De Leon, M. E., Duffy, J. E., Ezzat, L., Gignoux-Wolfsohn, S., Herre, E. A., Kaye, J. Z., Kline, D. I., Kueneman, J. G., McCormick, M. K., McMillan, W. O., O’Dea, A., Pereira, T. J., Petersen, J. M., Petticord, D. F., Torchin, M. E., Thurber, R. V., Videvall, E., Wcislo, W. T., Yuen, B., Eisen, J. A. . Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution. Plos Biology, 19(8), (2021): e3001322, https://doi.org/10.1371/journal.pbio.3001322.Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host’s physiological capacities; however, the identity and functional role(s) of key members of the microbiome (“core microbiome”) in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems’ capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts’ plastic and adaptive responses to environmental change requires (i) recognizing that individual host–microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.Financial support for the workshop was provided by grant GBMF5603 (https://doi.org/10.37807/GBMF5603) from the Gordon and Betty Moore Foundation (W.T. Wcislo, J.A. Eisen, co-PIs), and additional funding from the Smithsonian Tropical Research Institute and the Office of the Provost of the Smithsonian Institution (W.T. Wcislo, J.P. Meganigal, and R.C. Fleischer, co-PIs). JP was supported by a WWTF VRG Grant and the ERC Starting Grant 'EvoLucin'. LGEW has received funding from the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement No. 101025649. AO was supported by the Sistema Nacional de Investigadores (SENACYT, Panamá). A. Apprill was supported by NSF award OCE-1938147. D.I. Kline, M. Leray, S.R. Connolly, and M.E. Torchin were supported by a Rohr Family Foundation grant for the Rohr Reef Resilience Project, for which this is contribution #2. This is contribution #85 from the Smithsonian’s MarineGEO and Tennenbaum Marine Observatories Network.

    Trade-Offs Between Reducing Complex Terminology and Producing Accurate Interpretations from Environmental DNA: Comment on “Environmental DNA: What\u27s behind the term?” by Pawlowski et al., (2020)

    Get PDF
    In a recent paper, “Environmental DNA: What\u27s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring,” Pawlowski et al. argue that the term eDNA should be used to refer to the pool of DNA isolated from environmental samples, as opposed to only extra-organismal DNA from macro-organisms. We agree with this view. However, we are concerned that their proposed two-level terminology specifying sampling environment and targeted taxa is overly simplistic and might hinder rather than improve clear communication about environmental DNA and its use in biomonitoring. This terminology is based on categories that are often difficult to assign and uninformative, and it overlooks a fundamental distinction within eDNA: the type of DNA (organismal or extra-organismal) from which ecological interpretations are derived
    corecore