14 research outputs found

    Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony

    Get PDF
    Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher β diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and β diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and β diversity lead to a positive diversity–stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services

    Murein and pseudomurein cell wall binding domains of bacteria and archaea—a comparative view

    Get PDF
    The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and acts as an adhesion platform for bacteriophages. The walls of bacteria and archaea are mostly composed of murein and pseudomurein, respectively. Cell wall binding domains play a crucial role in the non-covalent attachment of proteins to cell walls. Here, we give an overview of the similarities and differences in the biochemical and functional properties of the two major murein and pseudomurein cell wall binding domains, i.e., the Lysin Motif (LysM) domain (Pfam PF01476) and the pseudomurein binding (PMB) domain (Pfam PF09373) of bacteria and archaea, respectively

    Plant Diversity Changes during the Postglacial in East Asia: Insights from Forest Refugia on Halla Volcano, Jeju Island

    Get PDF
    Understanding how past climate changes affected biodiversity is a key issue in contemporary ecology and conservation biology. These diversity changes are, however, difficult to reconstruct from paleoecological sources alone, because macrofossil and pollen records do not provide complete information about species assemblages. Ecologists therefore use information from modern analogues of past communities in order to get a better understanding of past diversity changes. Here we compare plant diversity, species traits and environment between late-glacial Abies, early-Holocene Quercus, and mid-Holocene warm-temperate Carpinus forest refugia on Jeju Island, Korea in order to provide insights into postglacial changes associated with their replacement. Based on detailed study of relict communities, we propose that the late-glacial open-canopy conifer forests in southern part of Korean Peninsula were rich in vascular plants, in particular of heliophilous herbs, whose dramatic decline was caused by the early Holocene invasion of dwarf bamboo into the understory of Quercus forests, followed by mid-Holocene expansion of strongly shading trees such as maple and hornbeam. This diversity loss was partly compensated in the Carpinus forests by an increase in shade-tolerant evergreen trees, shrubs and lianas. However, the pool of these species is much smaller than that of light-demanding herbs, and hence the total species richness is lower, both locally and in the whole area of the Carpinus and Quercus forests. The strongly shading tree species dominating in the hornbeam forests have higher leaf tissue N and P concentrations and smaller leaf dry matter content, which enhances litter decomposition and nutrient cycling and in turn favored the selection of highly competitive species in the shrub layer. This further reduced available light and caused almost complete disappearance of understory herbs, including dwarf bamboo

    On the need for phylogenetic 'corrections' in functional trait-based approaches

    Get PDF
    There is considerable uncertainty about if, and when, phylogenetic information is needed to answer various ecological questions about trait-based ecological studies. It has been recommended that both functional and phylogenetic information should be combined, and some researchers have even suggested that functional information for species should be 'corrected' because species are not phylogenetically independent. Here, we address these issues by identifying key types of questions in functional trait-based ecology and discussing the utility of phylogenetic information for answering them, either as a correction or in combination with functional traits. Phylogenetic analyses are identified as essential to answer questions related to the evolution of adaptations to abiotic and biotic conditions. However, we argue that phylogenetic information is not always relevant for functional trait studies, and should not be incorporated into ecological analyses without clear justification. Phylogenetic relatedness between species should not be considered a bias to be corrected, but rather an evolutionary signal that allows results to be interpreted at different evolutionary scales. Furthermore, if traits are conserved, phylogeny can be used as a proxy for missing information on traits and functional trait diversity. We conclude by providing guidelines on when to apply, and how to interpret, results obtained using phylogenetic information for a variety of ecological questions linked to functional traits

    Predictably simple: assemblages of caterpillars (Lepidoptera) feeding on rainforest trees in Papua New Guinea.

    No full text
    Predictability in the composition of tropical assemblages of insect herbivores was studied using a sample of 35,952 caterpillars (Lepidoptera) from 534 species, feeding on 69 woody species from 45 genera and 23 families in a lowland rainforest in Papua New Guinea. Caterpillar assemblages were strongly dominated by a single species (median 48% of individuals and 49% of biomass). They were spatially and temporally constant (median normalized expected species shared (NESS) similarity between assemblages from the same host was greater than or equal to 0.85 for three sites 8-17 km apart as well as for three four-month periods of the year). Further, the median presence of species was 11 months per year. Assemblages on hosts from different families and genera were virtually disjunct (NESS similarity less than 0.05) as the caterpillars were mostly specialized to a single plant family (77% of species) and, within families, to a single genus (66% of species), while capable of feeding on multiple congeneric hosts (89% of species). The dominance of caterpillar assemblages by a small number of specialized species, which also exhibited low spatial and temporal variability, permitted robust and reliable estimates of assemblage composition and between-assemblage similarity from small samples, typically less than 300 individuals per host plant. By contrast, even considerably larger samples were insufficient for estimates of species richness. A sample of 300 individuals was typically obtained from 1,050 m(2) of foliage sampled during 596 tree inspections (i.e. a particular tree sampled at a particular time) in the course of 19 sampling days (median values from 69 assemblages). These results demonstrate that, contrary to some previous suggestions, insect herbivore assemblages in tropical rainforests have a predictable structure and, as such, are amenable to study

    Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony

    No full text
    Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher β diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and β diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and β diversity lead to a positive diversity–stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services
    corecore