38 research outputs found

    Haiguspõhjuslike geenide tuvastamine statistiliste meetoditega

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneHaiguste mõistmiseks ja ravimiseks on keskseks eelduseks põhjuslike, haigusprotsessides osalevate geenide väljaselgitamine – selliste geenide poolt kodeeritud valkude tööd saab ravimite abil haigustele pärssivalt ümber korraldada. Põhjuslike seoste leidmisel on peamiseks standardiks laboratoorsed katsed ja kontrollgrupiga kliinilised uuringud, kuid nende läbiviimine on kulukas ja aeganõudev. Käesolevas doktoritöös näitame, et haigusi ja teisi kompleksseid fenotüübilisi tunnuseid põhjuslikult mõjutavaid geene saab märksa efektiivsemalt tuvastada statistiliste meetoditega. Geneetikas on põhjuslik analüüs alles hiljuti hoo sisse saanud seoses rahvuslike biopankade poolt kogutud suurte andmemahtude rakendamisega. Valdkond on uudne ja suure potentsiaaliga, mistõttu on vastav matemaatiline teooria alles kujunemisjärgus ja kiiresti arenev. Pühendame doktoritöös märkimisväärset tähelepanu nii selle teooria süstemaatilisele esitusele kui ka praktilistele edasiarendustele. Põhjusliku statistilise analüüsi alusprintsiipe rakendades töötame välja metoodika põhjuslike geenide tuvastamiseks väikestest valimitest (n ≈ 500), informeerides põletikumarkeri C-reaktiivse valgu funktsiooni immuunvastuses. Domeeniteadmistele tuginedes loome põhjuslike mudelite eelduste suhtes robustse algoritmi, mis võimaldab mistahes haiguse või komplekstunnuse toimemehhanismides olulist rolli omavaid geene avastada hüpoteesivabalt üle terve genoomi. Süvitsi vaatleme ühes haigustega seotud genoomipiirkonnas (16p11.2) leiduvate geenide mõju reproduktiivtervisele, osutades just funktsionaalselt olulistele geenidele. Personaalmeditsiini arenguid silmas pidades uurime ka põhjuslike geenide sõltuvust soost. Samuti hüpotiseerime, kas populaarsed assotsiatsiooniuuringud geenide ja haiguste vahel tuvastavad põhjuslikke geene, haigustest tingitud muutusi geeniekspressioonis või pelgalt juhuslikku müra. Peamised teadustöö tulemused verifitseerime laboris katseliselt.A prerequisite in understanding and curing disease is the identification of genes active in disease processes – drugs could be developed to target the proteins encoded by such causal genes. The main standard in discovering causal relationships between traits is provided by lab experiments and randomized clinical trials but these can be time-consuming and expensive to undertake. In this dissertation, we show that functionally relevant genes in the development of diseases and other complex traits can be more effectively identified using statistical methods. Causal statistical analysis in genetics has only recently been propelled by taking advantage of the vast amount of data collected by national biobanks. Due to the novelty and projected impact of the field, the corresponding mathematical theory is still evolving and rapidly so. We direct considerable attention to systematically introduce this theory and then further expand on it in practical applications. We apply the principles of causal analysis to develop methodology for identifying causal genes in small samples (n ≈ 500), ascertaining the function of an inflammatory biomarker C-reactive protein in immune response. By utilizing domain knowledge, we create an algorithm – robust to the assumptions of causal models – for hypothesis-free identification of causal genes to arbitrary complex traits over the entire genome. Furthermore, we take an in-depth look into a specific disease-associated genomic region (16p11.2) and are able to pinpoint genes responsible for reproductive health. With respect to the personalized medicine movement, we study whether the causal genes differ between sexes. Finally, we hypothesize whether the popular association studies between gene expression and complex traits identify causal genes, disease-induced changes in gene expression or simply random noise. We validate our primary research results with lab experiments.https://www.ester.ee/record=b541721

    Spordiennustused: kihlveokontoritega konkureerimine NBA-s

    Get PDF
    Käesolev magistritöö püüab näidata, et spordikihlvedusid võib sõlmida professionaalsetel alustel, arvestades riskiga ja baseerides panustamisotsused matemaatikale. Töös on sporditulemustele ennustamist vaadeldud mitmekülgselt, alustades teema motiveerimisega ja probleemistiku uurimisega, kogudes ja korrastades suurel hulgal olulisi andmed, tutvustades juba varasemalt tehtud töid ja ideid; pakutud on uusi lahendusi, implementeeritud mitmeid algoritme ja teostatud kogutud andmetel põhjalik analüüs. Magistritöö jaoks on veebiroboti abil kogutud enam kui 15000 korvpallimängu andmed aastatelt 2000 kuni 2013 ja rohkem kui 5000 korvpallimängu koefitsiendid paljudelt kihlveokontoritelt. Mängude kohta kogutud informatsioon hõlmab nii meeskondade, mängijate ja viisikute kohta käivaid kokkuvõtlikke statistikuid kui ka sündmus-sündmus andmeid. Kõik andmed on korrastatud ja organiseeritud relatsioonilisse andmebaasi. Analüüsi osas veenduti esialgu teoreetiliselt tõestatud tulemuses, et juhuslikult spordisündmustele panustamine on keskmiselt kahjumlik. Seejärel püüti kasumlikult panustada lihtsate mudelite abil, mis klassifitseerisid korvpallimängu võitja meeskondade eelnevate omavaheliste mängude põhjal. Leiti mudel, mis suurest testandmetel tehtud klassifitseerimisveast (41,4%) hoolimata andis panustamissituatsioonis suure tulususe. Kihlveokontoreid püüti võita ka tehisõppe meetodite abil. Selleks kasutati logistilist regressiooni ja AdaBoosti, sobivate tunnuste valikuks implementeeriti mitmed heuristikud. Ükski nimetatud meetoditega treenitud klassifitseerija ei olnud panustamisel kasumlik, samas suutis parim logistilise regressiooni mudel klassifitseerida korrektselt 68,9% testmängudest. Lihtsate mudelite ja tehisõppe meetoditega leitud mudelite põhjal veendusime, et parem klassifitseerija ei pruugi anda suuremat kasumit. Seetõttu on klassifitseerijate ehitamisel treeningriski minimiseerimise asemel proovitud maksimiseerida ka treeningkasumit. Ideed on püütud jõuga realiseerida otsustuspuude abil. Samuti on implementeeritud modifitseeritud AdaBoosti meetod, mis kaalus vaatlusi vastavalt koefitsientide suurusele ja töötas kohati paremini kui originaalne AdaBoost. Lisaks on korvpallimängude võitjaid proovitud ennustada korvpallitulemuste simuleerimise abil Poissoni protsesside põhjal

    Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits

    Get PDF
    Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene-trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits

    Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits

    Get PDF
    Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene-trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits.Peer reviewe

    Limited evidence for blood eQTLs in human sexual dimorphism

    Get PDF
    The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection. Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs

    An exploratory phenome wide association study linking asthma and liver disease genetic variants to electronic health records from the Estonian Biobank

    Get PDF
    <div><p>The Estonian Biobank, governed by the Institute of Genomics at the University of Tartu (Biobank), has stored genetic material/DNA and continuously collected data since 2002 on a total of 52,274 individuals representing ~5% of the Estonian adult population and is increasing. To explore the utility of data available in the Biobank, we conducted a phenome-wide association study (PheWAS) in two areas of interest to healthcare researchers; asthma and liver disease. We used 11 asthma and 13 liver disease-associated single nucleotide polymorphisms (SNPs), identified from published genome-wide association studies, to test our ability to detect established associations. We confirmed 2 asthma and 5 liver disease associated variants at nominal significance and directionally consistent with published results. We found 2 associations that were opposite to what was published before (rs4374383:AA increases risk of NASH/NAFLD, rs11597086 increases ALT level). Three SNP-diagnosis pairs passed the phenome-wide significance threshold: rs9273349 and E06 (thyroiditis, p = 5.50x10<sup>-8</sup>); rs9273349 and E10 (type-1 diabetes, p = 2.60x10<sup>-7</sup>); and rs2281135 and K76 (non-alcoholic liver diseases, including NAFLD, p = 4.10x10<sup>-7</sup>). We have validated our approach and confirmed the quality of the data for these conditions. Importantly, we demonstrate that the extensive amount of genetic and medical information from the Estonian Biobank can be successfully utilized for scientific research.</p></div

    Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits

    Get PDF
    Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene-trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits

    Get PDF
    Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene-trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits
    corecore