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Genome-wide association studies (GWAS) have identified thousands of variants associated

with complex traits, but their biological interpretation often remains unclear. Most of these

variants overlap with expression QTLs, indicating their potential involvement in regulation of

gene expression. Here, we propose a transcriptome-wide summary statistics-based Men-

delian Randomization approach (TWMR) that uses multiple SNPs as instruments and mul-

tiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes,

it uncovers 3,913 putatively causal gene–trait associations, 36% of which have no genome-

wide significant SNP nearby in previous GWAS. Using independent association summary

statistics, we find that the majority of these loci were missed by GWAS due to power issues.

Noteworthy among these links is educational attainment-associated BSCL2, known to carry

mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal

effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has

the potential to identify biological mechanisms underlying complex traits.
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Genome-wide association studies (GWAS) have identified
tens of thousands of common genetic variants associated
with hundreds of complex traits1. The identification of

causal genes using GWAS results is difficult, however, because
this approach only highlights fine-mapped intervals of associated
variants in linkage disequilibrium (LD) with the causal marker2–4.
Linking the effect of SNPs to gene function is not straightforward
without additional data, especially, as the majority of these trait-
associated variants fall into non-coding regions of the genome1

with no direct influence on protein structure or function.
It has been shown that trait-associated SNPs are three times

more likely to be associated with gene expression, i.e., expression
quantitative trait loci (eQTLs)5–8. Such significant enrichment
suggests that many SNP-trait associations could act through gene
expression (i.e., SNP→Gene expression→ trait).

Transcriptome-wide association studies (TWAS) integrating
GWAS and eQTLs data have been proposed to unravel gene–trait
associations7,9,10. However, although these studies aim to identify
genes whose (genetically predicted) expression is significantly
associated to complex traits, they do not aim to estimate the
strength of the causal effect and are unable to distinguish cau-
sation from horizontal pleiotropy (i.e., when a genetic variant
influences multiple phenotypes independently). For this reason,
we rather chose to apply a Mendelian randomization (MR)
approach to estimate the causal effect of gene expression on
complex traits.

A conventional MR analysis estimates the causal effect of a risk
factor (exposure) on an outcome by using genetic variant(s) that
are (directly) associated only with the risk factor as instrumental
variables11. As most SNPs have small effects on phenotypes,
increasing the number of instruments increases the statistical
power12. If SNPs, exposure, and outcome are all measured in the
same sample, the causal effect of the risk factor in the outcome
can be estimated using a two-stage least squares13 approach.
However, large cohorts of this kind are rare rendering such
approach heavily underpowered. It is often the case that the
exposure and the outcome are available in different data sets, a
situation for which two-sample MR methods have been devel-
oped14. The key advantage of using two-sample MR is that it only
requires publicly available GWAS summary statistics15. In such
an approach, only independent SNPs are considered and a fixed
effects inverse–variance weighted (IVW) meta-analyses is used to
estimate the causal effect16,17. As the IVW estimate is a weighted
average of the effects from each SNP, if any of the SNPs shows
horizontal pleiotropy then the causal effect estimate is biased.
However, such pleiotropy introduces heterogeneity, which can be
detected and SNPs contributing the most to the heterogeneity can
be excluded18–20, a good solution if the majority of the instru-
ments are valid. Conversely, when some of the genetic variants in
the analysis are not valid instruments, other MR approaches (i.e.,
MR-Egger20, weighted median21, or mode-based MR22) should be
applied. Although such methods provide a more robust estimate
of the causal effect, they have less power to detect causal
association.

Pleiotropy could alternatively be tackled using multivariable
MR. If a variant exhibits horizontal pleiotropy, but we know its
association(s) to some mediators of its indirect effect to the
outcome, those mediators could be included as additional expo-
sures and one can perform a multivariable MR, which can miti-
gate bias by jointly estimating the causal effects of all exposures
on the outcome23,24.

Here, we adapt a multivariable MR method tailored to gene
expression levels as exposure, termed TWMR (Transcriptome-
Wide Mendelian Randomization), which integrates summary-
level data from GWAS and eQTLs studies in a multivariable MR
framework to estimate such causal effect of gene expression on

complex human traits. Of note, throughout the manuscript the
term “causal” is used for simplicity to mean “found to be causal
by our MR method”. A previous study25 proposed a univariable,
single instrument MR approach to identify genes whose expres-
sion levels are associated with a complex traits. However, it had
limited means to distinguish causality from pleiotropy. As eQTLs
are often shared between multiple genes26, we find it beneficial to
adapt a multiple-instrument, multiple-exposure MR approach for
gene expression exposures. Our method only requires summary-
level data (along with pair-wise SNP LD estimated from, e.g., the
1000 Genomes27 or the UK10K reference panel28) allowing data
integration from different studies.

The manuscript is organized as follows. First, we perform an
extensive simulation study to confirm that under our model
setting, the method controls type I error rate and achieves
superior RMSE compared with standard approaches. We then
apply our method to the largest publicly available GWAS sum-
mary statistics (based on sample sizes ranging from 20,883 to
339,224 individuals) and combine them with eQTL data from
GTEx29 and the eQTLGen Consortium (n= 31,684)30 to provide
an atlas of putatively functionally relevant genes for 43 complex
human traits. As there are only sporadic examples of causal
gene–disease links, we use the following proxies to gold standard
gene–disease links and test whether the TWMR results are
meaningful and confirm previous knowledge: (a) experimentally
established causal links (e.g., SORT1 with LDL in liver31); (b)
gene–disease links based on the OMIM database; (c) genes falling
into an association region identified by GWAS, but only in larger
sample size. Finally, we carry out several follow-up analyses to
make biological inferences.

Results
Overview of the approach. MR relies on three assumptions about
the instruments: (i) they must be sufficiently strongly associated
with the exposure; (ii) they should not be associated with any
confounder of the exposure–outcome relationship; and (iii) they
should be associated with the outcome only through the exposure.
Violation of any of these assumptions would lead to biased esti-
mates of the causal effect and potential false positives18. In our
view, one of the most difficult situations in an MR analysis is
when there exists a heritable confounding factor of the
exposure–trait relationship. All instruments for the exposure that
act through this confounding factor will have proportional effect
on the exposure and the outcome and will bias the causal effect
estimates toward the ratio of the causal effect of the confounding
factor on the outcome and the risk factor. Whereas in the past few
years methodological developments have addressed pleiotropy
issues18,19,17, the situation described above was rarely
addressed32.

Recently, Zhu et al.25 developed a colocalization method in a
summary-based MR analyses framework to test whether the
effects of genetic variants on a phenotype are mediated by gene
expression. They designed a heterogeneity test (HEIDI) to
identify pleiotropic SNPs that could bias the causal estimate.
Using only one instrument renders the method less powerful and
when small eQTL study is used there is often insufficient power
for the heterogeneity test to flag up if the top eQTL is an outlier.
Including other SNPs as instruments allows us to replace the
third MR assumption with the weaker InSIDE (Instrument
Strength Independent of Direct Effect) assumption. When the
InSIDE assumption is violated, but entirely owing to another
genes’ expression being the confounders of the (primary gene)
expression–trait correlation, including the confounder genes as an
additional exposures in a multivariable MR can resolve the
problem and yield unbiased causal effect estimates. For this
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reason, we applied TWMR, a multivariable (multi-gene) multi-
instrument MR approach16,33 (Fig. 1a, b) that should specifically
reduce the bias owing to pleiotropic effects.

For a set of k genes, using inverse–variance weighted method
for summary statistics34,35, we estimated the multivariate causal
effect of the expression levels for several genes at a locus on an
outcome trait as

α̂ ¼ E′C�1E
� ��1

E′C�1G
� �

; ð1Þ
where E is a n × k matrix that contains the univariate effect size

of n SNPs on k gene expressions (these estimates come from an
eQTL study); G is a vector of length n that contains the univariate
effect sizes of the same n SNPs on the phenotype (these estimates
come from publicly available GWAS summary statistics) and C is
the pair-wise correlation (LD) matrix between n SNPs (estimated
from the UK10K panel).

To demonstrate the advantage of our multi-exposure approach,
we performed simulation analyses in settings relevant for
expression-disease causal analysis. In particular, we demonstrated
that if a subset of SNPs affect more than one gene at a locus, the
multi-gene approach provides a more precise estimation of the
causal effect of the gene expression on the phenotypes: the root
mean squared error (RMSE) in the multi-gene approach is more

than twofold lower than in the single-gene approach in all the
simulations performed varying the degree of pleiotropy, number
of genes, and SNPs included in the model. Furthermore, we
showed that the multi-gene approach is more powerful (on
average 1.3% power gain) and, more importantly, accurately
controls type I error rate as opposed to the single-gene approach,
which can easily reach 20% (at 5% nominal level) in case of
pleiotropy (Supplementary Figs. 1–6).

Applying TWMR to GWAS and eQTL summary statistics. We
applied TWMR to summary data from an eQTL meta-analyses
performed in blood samples from >31 K individuals (eQTLGen
Consortium30) and the largest publicly available GWAS data to
assess causal associations between gene expression and 43 com-
plex traits.

Note that the aim of our paper is not to confirm the validity of
a well-established method in simulation studies, because such MR
approaches have been extensively tested in various simulation
setups34,36. Our focus is rather to demonstrate the utility of such
approaches when applied to real data.

Data from eQTLGen Consortium contain association summary
statistics for 10,023,016 SNPs and 19,251 genes. In our analyses
we included only cis-eQTLs with FDR < 0.05 (corresponding to
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independent eQTLs with PeQTL < 1.83 × 10−5 (step 2) and then we included in the model all the genes for which those SNPs are eQTLs (step 3). In addition,
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independent SNPs (i.e., r2< 0.1) (step 5). b Schematic representation of TWMR to estimate the causal effect of multiple exposures (expression of genes)
on a phenotype using multiple instrumental variables (SNPs). c Validation of genes found by TWMR. Bars represent the number of genes found to be
causal for BMI when carrying out the TWMR analysis in different sized subsets of the UKBB. Among them, those confirmed by GWAS in the same sample
(i.e., that fall within 500kb of a GW significant SNP) are marked in dark blue; those confirmed only when running GWAS in the full 380K UKBB samples in
light blue; those confirmed only running TWMR in the full UKBB data set in gray, whereas the light gray bars on the top represent the number of genes
found by TWMR, but not confirmed in the full UKBB data set
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PeQTLs < 1.829 × 10−5), resulting in 3,699,824 eQTLs for 16,990
eGenes (i.e., genes whose expression levels are associated with at
least one genetic variant). We only used cis-eQTLs data as trans-
eQTLs typically have weaker effect size and less direct effect,
hence are more prone to violate MR assumptions. In total, we
found 2,369 genes putatively causally associated with at least one
phenotype giving rise to 3,913 gene–trait associations (PTWMR <
3 × 10−6= 0.05/16,000, where 16,000 corresponds to the number
of genes tested for each phenotype) (Supplementary Fig. 7 and
Supplementary Table 1 and Supplementary Data 1).

Pleiotropic SNPs lead to biased causal effect estimates. Using
our approach in simulations, we show how single-gene analyses
can lead to biased causal effect estimates (Supplementary Figs. 1–
6 and 9). In the multi-gene approach, we condition the SNP-
exposure effects on their corresponding effects on other genes but
still, genetic variants can influence the outcome through other
(non expression related) risk factors (horizontal pleiotropy).
Under the assumption that the majority of SNPs in the region
influence the outcome only through the exposures included in the
model22, SNPs violating the third MR assumption would sig-
nificantly increase the Cochran’s heterogeneity Q statistic (see
Methods)37. Overall, we detected heterogeneity (PHET < 1 × 10−4)
for 2,017 of the 5,275 originally significant gene–trait associations.
Out of these 2017 associations, 549 passed the heterogeneity test
after removing SNPs showing pleiotropic effects. Furthermore,
removing pleiotropic SNPs led to the identification of 106 addi-
tional associations, giving the final number of 3,913 robust
associations (Supplementary Fig. 8).

MR improves GWAS power to detect associated loci. Our
method, incorporating eQTL information into GWAS analyses,
has the potential to increase the power of GWAS in identifying
loci associated with complex traits.

Conventional gene-based tests, usually based on physical
distance or LD rarely lead to the discovery of new loci38,39.
With such approaches, identifying new loci missed by GWAS is
very difficult because a limited set of (independent) associated
variants in/near a gene is diluted by the large number of null
SNPs. Hence, the combined association signal for genes is
typically weaker than the strongest SNP in the region.

Furthermore, given that the majority of GWAS SNPs falls outside
coding regions, they may be excluded from gene-centric analyses.

To evaluate the performance of our approach we conducted
GWAS and TWMR analyses for BMI on several subsets of
individuals from UKBiobank (UKBB). Using the full sample, we
found 343 significant TWMR genes associated with BMI (Fig. 1c).
Among these, 108 are >500kb away from any GW significant
SNP, hence potentially representing new loci that were missed by
the conventional GWAS owing to power issues. To assess if the
additional genes implicate regions harboring truly associated
SNPs, we carried out the GWAS and TWMR analysis for
18 subsets of the UKBB with increasing sample size (from 20,000
to 360,000). We observed that most of TWMR identified genes in
the small subsets are confirmed, i.e., fall within 500kb vicinity of
lead SNPs identified as GW significant in the GWAS using the
full sample. For example, 16 genes found by TWMR and not
found by GWAS (i.e., positioned >500kb away from any GW
significant SNP) in the subset of 100K individuals overlap
significantly (OR= 5.70, hypergeometric P= 0.042) with the 365
genes mapping within 500kb of the SNPs identified by the GWAS
performed using the full data set. We observed that the portion of
loci missed by GWAS decreases with increasing sample size,
indicating a saturation effect. To support the consistency of our
findings, >60% of TWMR genes identified in any of the 18 subsets
of the full sample and missed by GWAS in the full data set show
significant association in the TWMR analyses performed in the
full data set.

New trait-associated genes. In total, we found 2,369 putative
genes causally associated with at least one phenotype (3,913
gene–trait associations at PTWMR < 3 × 10−06) (Supplementary
Fig. 7, Supplementary Table 1 and Supplementary Data 1). Of
these gene–trait associations, 36% (1,399) were not prioritized by
previous GWASs, as no SNP reached genome-wide significance
level within the gene ±500kb (Supplementary Fig. 10). Of note,
27% (1,068/3,913) were missed by GWAS even when using a less
stringent threshold (i.e., PGWAS < 1 × 10−6). For example we
detected a causal effect of BSCL2 (PTWMR= 1.89 × 10−6) on
educational attainment (Fig. 2a). This is the only gene showing a
significant causal effect in that region and its positive link with
educational attainment is consistent with the already known
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involvement of this gene in type 2 congenital generalized lipo-
dystrophy (BSCL) (OMIM:#615924)40, which is frequently asso-
ciated with some degree of intellectual impairment. In addition,
among other regions missed by conventional GWAS, we show
that the association of LIPA (PTWMR= 9.93 × 10−8) (Fig. 2b) and
RAB23 (PTWMR= 2.71 × 10−7) with total hypercholesterolemia41

and height42, respectively, is not restricted to rare coding variants.
Furthermore, we prioritized genes in regions already known to

be associated with complex traits. For example, within the SOCS5
locus, which harbors height-associated SNPs identified by Wood
et al.43 (top SNP: rs12474201 P= 2.30 × 10−19), our results
suggest that SOCS5 is not causal (PTWMR= 0.89) and reveal that
high expression of CRIPT (PTWMR= 3.40 × 10−9) is causally
linked to high stature (Fig. 2c). Rare mutations in CRIPT are
known to be associated with short stature (OMIM:#615789)44,
making it the strongest candidate.

To test whether our putative causal genes are functionally
relevant, we overlapped the genes significantly associated with
height, educational attainment and total cholesterol with genes
assembled from the Online Mendelian Inheritance in Man
(OMIM) database involved in abnormal skeletal growth syn-
drome43, cognitive impairment and hypercholesterolemia, respec-
tively. Although we observed only a trend for enrichment for
height (1.3-fold, hypergeometric P > 0.05) and total cholesterol
(3.7-fold, hypergeometric P > 0.05), we found a significant
enrichment for educational attainment (2.6-fold, hypergeometric
P= 0.005) providing additional supporting evidence for our
prioritized genes.

We also found 1,784 regions where TWMR identified only one
putative causal gene. In two regions for educational attainment, our
analysis pointed exclusively to STRADA (PTWMR= 1.32 × 10−6)
and TBCE (PTWMR= 2.90 × 10−6), whose high and low expression,
respectively, is associated with educational attainment. Of note,
STRADA is already known to be associated with polyhydramnios,
megalencephaly, and symptomatic epilepsy (OMIM:#611087)45 and
TBCE with hypoparathyroidism-retardation-dysmorphism syn-
drome (OMIM:#241410)46. In another example, for rheumatoid
arthritis, PSTPIP1 emerged as the only causal gene at its locus: its
low expression is significantly associated with the risk of
rheumatoid arthritis in the general population (PTWMR= 1.24 ×
10−7). PSTPIP1 was associated with pyogenic sterile arthritis,
pyoderma gangrenosum, and acne syndrome (OMIM:#604416)47.

Disease-associated (non-synonymous) coding variants are
likely to have direct impact on the protein sequence, in which
case gene expression levels may be less important. To explore this
hypothesis, we looked up the causal association of 44 testable
genes harboring at least one coding variant associated with
height48. Only five out of the 44 genes showed significant causal
effect on height (OR= (5/44)/((374–5)/(13,849–44))= 4.25
where 13,849 is the total number of testable genes for height
and 374 is the number of TWMR-significant genes) and
hypergeometric P= 0.0047). That enrichment is lower than the
enrichment we observed overlapping the genes TWMR-
significant with the 1,088 genes mapping within 100kb of the
SNPs identified by the GWAS (OR= (280/1088)/(94/12761)=
34.9 and P= 3.72 × 10−281). This suggests that when the
association is driven by coding variant and not by gene
expression, our MR approach correctly does not point to any
causal gene.

Closest genes are often not causal. Recent studies suggested that
the gene closest to the GWAS top hits is often not the causal
one25,31,49. Consistent with these findings, among the 1,125
TWMR-significant regions harboring at least one genome-wide
significant SNP, we found that 71% of the genes closest to the top

SNP in the region do not show any significant association with
the phenotype (PTWMR > 3 × 10−6) (Supplementary Fig. 11). One
of the numerous such examples is the significant causal associa-
tion between educational attainment and ERCC8 (PTWMR=
1.05 × 10−13), a gene previously linked with the monogenic
Cockayne Syndrome A (OMIM#216400)50 in the ELOVL7 region
(top SNP: rs61160187, P= 5.93 × 10−13).

Genes with pleiotropic effect. Genes often play a role in
numerous and independent biological processes, leading to
different outcomes. We thus investigated the degree of pleio-
tropy and identified 848 genes associated with multiple phe-
notypes (Supplementary Fig. 7). One such pleiotropic gene is
GSDMB: its low expression is associated with Crohn’s disease
(CD) (PTWMR = 2.89 × 10−11), inflammatory bowel disease
(PTWMR = 4.54 × 10−11), rheumatoid arthritis (RA) (PTWMR=
2.91 × 10−15), ulcerative colitis (UC) (PTWMR= 2.70 × 10−08),
high-density lipoprotein cholesterol (PTWMR= 4.27 × 10−9),
lymphocytes (PTWMR= 3.41 × 10−23) and mean platelet
volume (PTWMR= 2.68 × 10−7). This result pinpoints shared
effects across CD, UC, and RA. Of note, the susceptibility allele
of the rs2872507 locus was already known to be associated with
the reduced expression of GSDMB in intestinal biopsies from
patients with IBD51.

We also found significant association between COPG1 and lipid
traits: high-density lipoprotein cholesterol (PTWMR= 1.64 × 10−6),
low-density lipoprotein cholesterol (PTWMR= 7.88 × 10−11), total
cholesterol (PTWMR= 1.51 × 10−9), and triglycerides (PTWMR=
8.85 × 10−10). Of note, we observed significant causal associations,
despite the fact that this locus was missed by the GWASs we used
in our TWMR analysis for the four traits (Fig. 3). Supporting our
findings, this gene is involved in lipid homeostasis.

Trait correlation. Exploring the relationships among complex
traits and diseases can provide useful etiological insights and help
prioritize likely causal relationships. A cross-trait LD Score
regression method52 was used to evaluate the genome-wide
genetic correlation between complex traits. To possibly under-
stand the biological mechanism of the shared genetic architecture
we estimated the proportion of such genetic correlation chan-
neled through the transcriptome program. For this, we computed
the correlation (ρ̂E) between the causal effect estimates of the gene
expression (or equivalently the Z scores from our TWMR ana-
lysis) across a subset of 2,974 independent genes (including those
that were not significant for any trait; see Methods). Among the
903 pairs of traits, we found several significant correlations in line
with previous epidemiological observations (Fig. 4a). For exam-
ple, for age at menarche we observed negative correlation with
BMI (ρ̂E =−0.20 FDR = 2.97 × 10−20)53,54. As expected, we
observed a negative correlation (ρ̂E =−0.10, PFDR= 2.20 × 10−5)
between coronary artery disease and educational attainment55.
Out of the 43 traits included in our analyses, 17 were included in
a previous study reporting genetic correlation between traits
estimated by LD score regression (ρ̂G)

52. Comparing the expres-
sion (ρ̂E) with genetic correlation (ρ̂G) estimates for 136 common
pairs of traits, we found a remarkable concordance between the
two estimates (r= 0.84). Of note, the expression correlation
seems to be 43% of the genetic correlation on average. Although
the genetic correlation estimate having smaller variance may
explain part of this attenuation, we think that the main reason is
that about half of the observed genetic correlation propagates to
gene–expression level in whole blood (Fig. 4b). In particular we
observed 33 pairs of traits showing significance for ρ̂E and ρ̂G,
whereas four were significant only for ρ̂E , 9 only for ρ̂G and 90 not
significant for either. Among the significant correlations not
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identified by LD score regression we found positive correlation
between schizophrenia and ulcerative colitis (ρ̂E = 0.08, FDR =
1.26 × 10−03) in directional agreement with genetic correlation
reported in a previous study56 and supporting the molecular
evidence for an autoimmune etiology for a fraction of schizo-
phrenia cases. We also observed negative correlation between
height and low-density lipoprotein cholesterol (ρ̂E =−0.07,
FDR = 6.71 × 10−3), confirming the results of a previous study57.

Tissue-specific effects. As many traits manifest themselves only
in certain tissues, it is important to integrate data from the tissue
of interest for the studied phenotype when trying to interpret
GWAS results using gene expression as an intermediate pheno-
type. For this reason, we performed tissue-specific TWMR ana-
lyses using the eQTLs identified by GTEx (Genotype Tissue
Expression Project)29, which provides a unified view of genetic
effects on gene expression across 48 human tissues. Despite the
fact that sharing eQTLs (in consistent effect direction) across
tissues is very common58, there are many tissue-specific eQTLs.

For practical reasons we performed the tissue-specific analyses
only for four phenotypes for which the key tissue is well known:
CAD (artery), CD (intestine), LDL (liver), and T2D (pancreas).
Among our results (Supplementary Data 2–5) we found MRAS
and PHACTR1, associated with coronary artery disease (CAD),
showing significant association in arterial tissues, which con-
tribute most to the genetic causality of this trait59 (MRAS: PTWMR

= 2.04 × 10−7 in tibial artery and PTWMR= 1.22 × 10−6 in aorta,

PHACTR1: PTWMR= 4.80 × 10−9 in tibial artery) (Fig. 5). Inter-
estingly, no gene showed a significant causal effect in the other
tissues, including whole blood using the large dataset from
eQTLGen Consortium. MRAS and PHACTR1 have significant
eQTLs in other tissues but none of these effects was associated
with the diseases, confirming that the disease-relevant eQTLs
were tissue specific.

We also confirm SORT1 being causal for LDL in line with
previous findings31. Tissues that are not causal for LDL, like skin,
pituitary, and testis59, incorrectly pointed to PSRC1 as the most
likely putative causal gene and only liver pointed to SORT1 as
strong candidate gene (Supplementary Fig. 12 and Supplementary
Data 4). This result confirms, once again, the importance to
identify the relevant tissue(s) for the studied phenotype before
looking for the causal gene.

Discussion
We presented a powerful approach to perform TWMR analysis
with multiple instruments and multiple exposures to identify
genes with expression causally associated with complex traits. By
increasing the statistical power through the integration of
gene–expression and GWAS data, this method enables the
prioritization of genes in known or novel associated regions and
the identification of loci missed by conventional GWAS. We
showed its efficacy through extensive analysis performed in 43
phenotypes. Whereas we have space to present only selected
interesting findings, the readers will find the full results in the
Supplementary Data 1–5. Exploiting UKBB data we showed that
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in most cases these new loci harbor true signals and will be
eventually found by larger GWAS in the future.

Starting from our prioritized genes, we shed light on the shared
genetic architecture of complex traits, and we estimated that about
half of the genetic correlation is given by the gene–expression in
whole blood, reinforcing the view that many risk variants affect
complex traits through changes to gene regulation. Blood is, of
course, not necessarily the causal tissue, more probably gene
expression in blood may be an often good-enough proxy for the
expression levels in more-relevant tissues58.

Like all methods, our approach has its limitations, which need
to be considered when interpreting results. The putative causal
associations reported in this study are not definitive. They pro-
vide a prioritized list of candidate genes for future follow-up
studies and also shed light on possible biological mechanisms of
complex traits. This list of candidate genes will be more accurate
in the future when much larger eQTL data sets will become
available. Using larger eQTL data increases the number of
instruments, which can either make the evidence for non-zero
causal effect stronger or (under the null, in case the instruments
with largest effect were pleiotropic) additional instruments can
push the causal effect estimate toward zero. For example, we
interrogate the 71 loci claimed significant for height in25 and we
observed that seven of them do not show any significant effect in
our analyses (PTWMR > 0.05). However, six out of these seven
unconfirmed loci turn out to be significant when applying our
method to the same small eQTL data set26. Of note, our approach
revealed 263 new loci associated with height. Increased sample
size will be crucial to detect SNPs associated with the
gene–expression, whereas the possibility to interrogate more tis-
sues could unravel causative genes, which expression is not well
recapitulated in whole blood, the tissue in which the biggest
human eQTL studies have been performed so far. Indeed, we
failed to replicate the known association of FTO region with BMI
because the effects of the FTO SNP on IRX3 and IRX5 are specific
to primary adipocytes49, a tissue not tested in our analyses.
Furthermore, when conducting a tissue-specific analysis using
GTEx data, we had considerably lower power to detect causal
gene associations because for any given tissue, the sample size is
more than 30 times lower than in the blood eQTL data set,
ranging from 80 (brain-substantia nigra) to 491 (muscle) indi-
viduals. This represents an insurmountable limitation upon trying
to identify tissue-specific causal genes given the limited number
of eGenes shared between the tissues (Supplementary Fig. 13). In
line with previous work58 we observe that as long as a gene is
expressed in blood, its eQTLs are fairly similar to its eQTLs in
other tissues. We hypothesize that the tissue specificity of causal
genes is mostly given whether the gene is expressed only in a
given tissue. Moreover, our work provocatively suggests that large
eQTL analyses such as GTEx with increased sample size and
number of assessed tissues could pinpoint to causative genes
more efficiently than increasing GWAS sampling.

Another shortcoming of our approach is that using current
eQTL data only 16K eGenes are testable, which substantially
decreases power to detect enrichment of our prioritized gene-
set in relevant pathways and regulatory networks. We expect
that larger eQTLs studies will allow identifying additional
eGenes, resulting in stronger enrichment when using causally
associated gene-sets rather than selecting genes based on phy-
sical proximity to GWAS hits. Still, many genes lead to disease
not through change in their gene expression, but via mod-
ification of the RNA or protein sequence, mechanisms our
approach is blind to.

Further limitations of our study are the violations of the MR
assumptions. In particular, horizontal pleiotropy and indirect
effects of the instruments on the exposures can substantially bias

causal effect estimates. Although cis-eQTLs are thought to have
direct effect of gene expression, we made particular effort to
protect our results from potential biases, such as using multiple
instruments, testing for effect heterogeneity and including other
gene expression traits as exposures, through which potential
pleiotropy may act. We think that accounting for pleiotropy,
whenever the relevant trait is available, is a better approach than
directly excluding violating instruments. In fact, with increasing
GWAS study size, more SNPs will be excluded owing to evidence
for mild pleiotropy, thereby reducing MR power.

Eventually, it is important to mention that, although in this
study we used eQTLs data from gene–expression, our MR
approach can be applied to other “omics” (e.g., methylation,
metabolomics, proteomics) data. Indeed, our method only
requires summary statistics from GWAS and any kind of expo-
sure partnered with LD estimates, demonstrating once more the
power of a carefully combined analysis of existing data to illu-
minate biological mechanism underlying complex traits and help
the design of functional experiments.

Methods
TWMR analysis. MR is a statistical method that uses genetic variants, so-called
instrumental variables (IVs), to estimate the causal effect of an exposure on an
outcome.

The IVs used in MR must verify three strong assumptions:

i. They are associated with the exposure.
ii. They are independent of any confounder of the exposure–outcome

association.
iii. They are conditionally independent of the output given the exposure.

These assumptions imply that the genetic variants (IVs) have a causal effect on
the outcome only via the risk factor. Although the first assumption can be easily
verified, the second one is impossible to confirm as not all confounders are known,
and the third requires instrument–exposure–outcome data measured in the same
sample and is often violated by pleiotropy. Most probably, the third assumption is
almost always violated in practice, but can be replaced by the weaker InSIDE
assumption (instrument strength independent of the strength of the pleiotropy)
when multiple independent instruments are available. Although we use multiple
independent instruments, these may share mechanisms as they belong to the same
cis region, which may lead to the violation of the InSIDE assumption20. In such
regions, pleiotropic effects of the genetic variants on the outcome could act via a
confounder owing to haplotype effects. One solution could be the inclusion of
trans-eQTLs as instruments, but many of these are strong cis-eQTLs for other
genes and hence much more likely to violate the second assumption of MR.

As many significant (PeQTL < 1.83 × 10−5) eQTLs are in high LD with other
nearby eQTLs, we pruned the eQTLs results using a stepwise selection procedure60

on the basis of conditional PeQTL to select, for each gene, independent eQTLs. For
each gene, using inverse–variance weighted method for summary statistics34, we
defined the causal effect of the gene expression on the outcome as

bα ¼ ðE′C�1EÞ�1ðE′C�1GÞ ð2Þ
Here E is a n × k matrix that contains the effect size of n SNPs on k gene

expressions (these estimates come from an eQTL study). An individual SNP may
affect a phenotype via different genes, therefore we estimated the causal effect
jointly to allow for this correlation: starting from the IVs of the gene i, we included
in the model all independent genes e2, …., ek for which the IVs are significant
eQTLs and all the independent significant eQTLs for those genes. G is a vector of
length n that contains the effect size of each SNP on the phenotype (these estimates
come from the publicly available GWAS summary statistics). C is the pair-wise LD
matrix between the n SNPs. Here, the LD was based on UK10K reference panel28.
To evaluate whether this panel approximates LD matrices derived from other
European cohorts sufficiently well, we compared results when using LD estimates
from 1000G-EUR27 and we saw very good concordance ( r = 0.96) between the
causal effect estimates using different reference panels to estimate LD
(Supplementary Fig. 15).

We ran a multivariable MR analysis for each ~ 16,000 gene, where we
conditioned its causal effect on the potential causal effects of all of its neighboring
genes. Let us consider now one focal gene. We need to select instrument SNPs and
exposure genes for the multivariate MR analysis that is destined to elucidate the
focal gene’s multivariate causal effect on the outcome. To this end, we first consider
all the independent eQTLs for the focal gene with conditional P < 1 × 10−3. Next,
we include as exposures all the genes for which the selected SNPs are eQTLs.
Finally, we extend the instruments to include all SNPs that are eQTLs for any of the
exposure genes. Note that genes that do not share eQTLs with the focal gene do not
alter the focal gene’s multivariate causal effect, hence do not need to be considered
here. To avoid numerical instability in our multiple regression model, we pruned
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SNPs that are in high LD (r2 > 0.1) (Fig. 1a). The variance of α can be
approximated by the Delta method61.

var α̂ð Þ ¼ ∂α̂

∂E

� �2

� var Eð Þ þ ∂α̂

∂G

� �2

� var Gð Þ þ ∂α̂

∂E

� �
� ∂α̂

∂G

� �
� covðE;GÞ ð3Þ

where cov(E, G) is 0 if E and G are estimated from independent samples (or if E
and G are independent).

We defined the causal effect Z-statistic for gene i as α̂i=SEðα̂iÞ, where
SE α̂ið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var α̂ð Þi;i

q
.

Applying TWMR to GWAS and eQTL summary results. We applied TWMR to
test each gene across the human genome for causal association between a phe-
notype and the expression level using summary statistics from GWAS and eQTLs
studies.

We cover 43 traits by using publicly available GWAS summary statistics (i.e.,
for each SNP we extracted the estimated univariate effect size and its standard
error) from the most recent meta-analyses. The traits analyzed in this study are
listed in Supplementary Table 1.

All summary statistics were downloaded from the NIH Genome-wide Repository
of Associations Between SNPs and Phenotypes (https://grasp.nhlbi.nih.gov/).

We used only SNPs on autosomal chromosomes and available in the UK10K
reference panel, in order to be able to estimate the LD among these SNPs. We
removed SNPs that were strand ambiguous, as well as those in the major
histocompatibility complex region (chr6:26.2–33.8 Mb).

Cis-eQTL data were obtained from the eQTLGen Consortium (31,684 whole
blood samples) and the GTEx29, which includes 48 tissues collected from 11,688
post-mortem biopsies from 635 individuals (see Supplementary Table 2 for sample
size per tissue).

Simulation analyses. To test if the multi-gene approach gives more accurate
estimates than single-gene approach, we performed simulation analyses. We
simulated a region containing 30 SNPs and three genes. We simulated 10,000
individuals for the eQTLs data set and another 100,000 for the GWAS data set. For
each dataset, the genotypes of the SNPs were simulated from a binomial dis-
tribution s � Bð2; qÞ, q � Uð0:05; 0:5Þ. The SNPs genotypes (s) were then stan-
dardized as z ¼ s�2qffiffiffiffiffiffiffiffiffiffiffiffi

2q 1�qð Þ
p :

For each SNP, we simulated its degree of pleiotropy (l) from a Poisson
distribution (λ= 0.4) (i.e., λ is the mean of the number of genes affected by the
SNP). The effects of the SNPs (βE) on the gene expression were estimated from a
normal distribution ðβE jβE ≠ 0Þ � Nð0; σ2Þ, where σ2 ¼ h2j =l, h

2
j is the heritability

of the gene j estimated from a uniform distribution h2j � U 0:01; 0:4ð Þ:
We simulated the expression of gene j based on the model

Ej ¼
X30
i¼1

βijz�i þ γEcþ εj ð4Þ

where γE ¼ 0:2, c � Nð0; 1Þ, εj � Nð0; σ2Þ and σ2 ¼ 1�P30
i¼1 β

2
ij � γ2E .

We simulated the phenotype based on the model

T ¼
X3
j¼1

Ejαj þ γTc′þ ε ð5Þ

where α � Nð0; 0:05Þ, γT ¼ 0:1, c′ � Nð0; 1Þ, εj � Nð0; σ2Þ and
σ2 ¼ 1�P3

i¼1 α
2
i � γ2T .

We repeated the simulation 1000 times. In each simulation replicated, we
estimated β̂E (the effect of the SNPs on the gene expression) and β̂G (the effect of
the SNPs on the phenotype) by a linear regression analyses and performed the
multi- and single- gene MR approach applying the formula described above. We
also experimented with different values of pleiotropy (in Poisson distribution λ=
0.2, 0.4, 0.6, and 0.8).

To investigate the statistical power of TWMR, we generated T under the
assumption that E1 has a causal effect on T using the same method as above. We
simulated three values of α1 (0.05, 0.03, and 0.01) and for each scenario we ran the
simulations 1000 times. Similarly, we calculated the type I error for the two
approaches under the assumption of no causal effect of E1 on T (i.e., α1= 0)
(Supplementary Figs. 1–6).

Heterogeneity test. The validity of the MR approach relies on three assumptions,
of which the third assumption (no pleiotropy) is crucial as MR causal estimates will
be biased if the genetic variants (IVs) have pleiotropic effects18. Our method
assumes that all genetic variants used as instrumental variables affect the outcome
only through gene expression and not through independent biological pathways.

In order to test for the presence of pleiotropy, we used Cochran’s Q test20,36.
In brief, we tested whether there is a significant difference between the MR-

effect of an instrument (i.e.,
PK

k¼1 αkEi;k) and the estimated effect of that

instrument on the phenotype (Gi). We defined

di ¼ Gi �
XK
k¼1

αkEi;k ð6Þ

and its variance as

var dið Þ ¼ var Gið Þ þ Eið Þ2 � var αð Þ þ var Eið Þ � ðαÞ2 þ var Eið Þ � var αð Þ ð7Þ
We can test the deviation of each SNP using the following test statistic

Ti ¼
d2i

varðdiÞ
� χ2m ð8Þ

In case of P < 1 × 10−4, we removed the SNP with largest |di| and then repeated
the test.

Performing 10 iterations of the heterogeneity test for height, we observed that
after three iterations we corrected >90% of the genes and after 5 we reach a plateau.
Thus, for practical reasons we decided to perform maximum three iterations for
each phenotype (Supplementary Fig. 14) and loci still showing heterogeneity were
discarded from further analysis.

Correlation between genes. A common observation in the analysis of gene
expression is that often physically close genes show similar expression patterns62.
To avoid numerical instability caused by near-colinearity in our multiple regression
model and making choices between co-regulated genes, we removed one gene from
each pair of genes with r2 ≥ 0.4. The correlation r2 was estimated as Pearson’s
correlation between the Z scores of the shared, independent eQTLs.

This strategy is blind to causal pathways where Gene1→Gene2→ trait. In such
scenario, Gene1-eQTLs are also eQTLs for Gene2 and since their effect sizes are
proportional (Gene1→Gene2), they are highly correlated. It means that, as we are
excluding highly correlated genes, Gene2 would be excluded (but its causal effect is
estimated separately when Gene1 is excluded) when we estimate the causal effect of
Gene1 on the trait and vice versa.

Genetic trait correlation at the level of gene expression. To estimate the
phenotypic correlation between each pair of traits we calculated the Pearson’s
correlation between the Z scores across the set of 2,974 independent genes
extracted from the 11,510 genes analyzed for all the 43 traits included in our
analyses.

Genome-wide association study in UKBB. We ran genome-wide association
study of BMI in 379,530 unrelated British individuals from UKBB using linear
model association testing implemented in bgenie software63.

We analyzed only SNPs included in UK10K reference panel and with a rs name.
In total we analyzed 15,599,830 SNPs.

BMI was adjusted for sex, age, age2, and 40 principal components.

URLs. For PLINK 1.90, see https://www.cog-genomics.org/plink2; for GCTA, see
http://cnsgenomics.com/software/gcta/#Download; for GTEx Portal, see http://
www.gtexportal.org/; for OMIM, see https://www.omim.org; for UK Biobank, see
http://www.ukbiobank.ac.uk/; for BGENIE, see https://jmarchini.org/bgenie/; for
LOCUSZOOM, see http://locuszoom.org; for NHGRI-EBI GWAS Catalog, see
http://www.ebi.ac.uk/gwas.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All summary statistics were downloaded from the NIH Genome-wide Repository of
Associations Between SNPs and Phenotypes (https://grasp.nhlbi.nih.gov/). The software
tools are available at the URLs above.

Code availability
R-code for performing TWMR analyses is available at https://github.com/eleporcu/
TWMR.
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