8 research outputs found

    14-3-3 Proteins Regulate a Cell-Intrinsic Switch from Sonic Hedgehog-Mediated Commissural Axon Attraction to Repulsion after Midline Crossing

    Get PDF
    SummaryAxons must switch responsiveness to guidance cues during development for correct pathfinding. Sonic Hedgehog (Shh) attracts spinal cord commissural axons ventrally toward the floorplate. We show that after crossing the floorplate, commissural axons switch their response to Shh from attraction to repulsion, so that they are repelled anteriorly by a posterior-high/anterior-low Shh gradient along the longitudinal axis. This switch is recapitulated in vitro with dissociated commissural neurons as they age, indicating that the switch is intrinsic and time dependent. 14-3-3 protein inhibition converted Shh-mediated repulsion of aged dissociated neurons to attraction and prevented the correct anterior turn of postcrossing commissural axons in vivo, an effect mediated through PKA. Conversely, overexpression of 14-3-3 proteins was sufficient to drive the switch from Shh-mediated attraction to repulsion both in vitro and in vivo. Therefore, we identify a 14-3-3 protein-dependent mechanism for a cell-intrinsic temporal switch in the polarity of axon turning responses

    Étude des interactions glie-glie et neurone-glie lors de la migration des cellules gliales de l'aile de drosophile

    No full text
    TOURS-BU Sciences Pharmacie (372612104) / SudocSudocFranceF

    Glial chain migration requires pioneer cells.

    No full text
    International audienceThe migration of glial chains along the nerve entails directional and coordinated movement. Despite its importance in the formation of the nervous system, this process remains poorly understood, because of the difficulty of manipulating identified cells. Using confocal time-lapse and cell ablation in the whole animal, we provide direct evidence for a discrete number of Drosophila peripheral glial cells acting as pioneers and guiding the rest of the migratory chain. These cells are in direct contact with several follower cells through a very long and stable cytoplasmic extension. The presence of pioneer cells and homotypic interactions at the tip of the chain allows coordinated movement and the formation of a continuous sheath around the nerve. These in vivo data open novel perspectives for understanding the cellular bases of vertebrate glial migration in physiological and pathological conditions

    The soluble form of CD160 acts as a tumor mediator of immune escape in melanoma

    No full text
    International audienceAbstract Melanoma is responsible for 90% of skin cancer-related deaths. Major therapeutic advances have led to a considerable improvement in the prognosis of patients, with the development of targeted therapies (BRAF or MEK inhibitors) and immunotherapy (anti-CTLA-4 or -PD-1 antibodies). However, the tumor constitutes an immunosuppressive microenvironment that prevents the therapeutic efficacy and/or promotes the development of secondary resistances. CD160 is an activating NK-cell receptor initially described as delineating the NK and CD8 + T -cell cytotoxic populations. Three forms of CD160 have been described: (1) the GPI isoform, constitutively expressed and involved in the initiation of NK-cells' cytotoxic activity, (2) the transmembrane isoform, neo-synthesized upon cell activation, allowing the amplification of NK cells' cytotoxic functions and (3) the soluble form, generated after cleavage of the GPI isoform, which presents an immuno-suppressive activity. By performing immunohistochemistry analyses, we observed a strong expression of CD160 at the primary cutaneous tumor site of melanoma patients. We further demonstrated that melanoma cells express CD160-GPI isoform and constitutively release the soluble form (sCD160) into the tumor environment. sCD160 was shown to inhibit the cytotoxic activity of NK-cells towards their target cells. In addition, it was found in the serum of melanoma patients and associated with increased tumor dissemination. Altogether these results support a role for sCD160 in the mechanisms leading to the inhibition of anti-tumor response and immune surveillance in melanoma

    Cochlear outer hair cells undergo an apical circumference remodeling constrained by the hair bundle shape.

    No full text
    International audienceEpithelial cells acquire diverse shapes relating to their different functions. This is particularly relevant for the cochlear outer hair cells (OHCs), whose apical and basolateral shapes accommodate the functioning of these cells as mechano-electrical and electromechanical transducers, respectively. We uncovered a circumferential shape transition of the apical junctional complex (AJC) of OHCs, which occurs during the early postnatal period in the mouse, prior to hearing onset. Geometric analysis of the OHC apical circumference using immunostaining of the AJC protein ZO1 and Fourier-interpolated contour detection characterizes this transition as a switch from a rounded-hexagon to a non-convex circumference delineating two lateral lobes at the neural side of the cell, with a negative curvature in between. This shape tightly correlates with the 'V'-configuration of the OHC hair bundle, the apical mechanosensitive organelle that converts sound-evoked vibrations into variations in cell membrane potential. The OHC apical circumference remodeling failed or was incomplete in all the mouse mutants affected in hair bundle morphogenesis that we tested. During the normal shape transition, myosin VIIa and myosin II (A and B isoforms) displayed polarized redistributions into and out of the developing lobes, respectively, while Shroom2 and F-actin transiently accumulated in the lobes. Defects in these redistributions were observed in the mutants, paralleling their apical circumference abnormalities. Our results point to a pivotal role for actomyosin cytoskeleton tensions in the reshaping of the OHC apical circumference. We propose that this remodeling contributes to optimize the mechanical coupling between the basal and apical poles of mature OHCs
    corecore