7 research outputs found

    Personalized Ovarian Cancer Disease Surveillance and Detection of Candidate Therapeutic Drug Target in Circulating Tumor DNA

    Get PDF
    Retrospective studies have demonstrated that nearly 50% of patients with ovarian cancer with normal cancer antigen 125 (CA125) levels have persistent disease; however, prospectively distinguishing between patients is currently impossible. Here, we demonstrate that for one patient, with the first reported fibroblast growth factor receptor 2 (FGFR2) fusion transcript in ovarian cancer, circulating tumor DNA (ctDNA) is a more sensitive and specific biomarker than CA125, and it can also inform on a candidate therapeutic. For a 4-year period, during which the patient underwent primary debulking surgery and chemotherapy, tumor recurrences, and multiple chemotherapeutic regimens, blood samples were longitudinally collected and stored. Whereas postsurgical CA125 levels were elevated only three times for 28 measurements, the FGFR2 fusion ctDNA biomarker was readily detectable by quantitative real-time reverse transcription-polymerase chain reaction (PCR) in all of these same blood samples and in the tumor recurrences. Given the persistence of the FGFR2 fusion, we treated tumor cells derived from this patient and others with the FGFR2 inhibitor BGJ398. Only tumor cells derived from this patient were sensitive to FGFR2 inhibitor treatment. Using the same methodologic approach, we demonstrate in a second patient with a different fusion that PCR and agarose gel electrophoresis can also be used to identify tumor-specific DNA in the circulation. Taken together, we demonstrate that a relatively inexpensive, PCR-based ctDNA surveillance assay can outperform CA125 in identifying occult disease

    Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival In Gynecologic Cancers.

    No full text
    BACKGROUND:High-grade serous ovarian and endometrial cancers are the most lethal female reproductive tract malignancies worldwide. In part, failure to treat these two aggressive cancers successfully centers on the fact that while the majority of patients are diagnosed based on current surveillance strategies as having a complete clinical response to their primary therapy, nearly half will develop disease recurrence within 18 months and the majority will die from disease recurrence within 5 years. Moreover, no currently used biomarkers or imaging studies can predict outcome following initial treatment. Circulating tumor DNA (ctDNA) represents a theoretically powerful biomarker for detecting otherwise occult disease. We therefore explored the use of personalized ctDNA markers as both a surveillance and prognostic biomarker in gynecologic cancers and compared this to current FDA-approved surveillance tools. METHODS AND FINDINGS:Tumor and serum samples were collected at time of surgery and then throughout treatment course for 44 patients with gynecologic cancers, representing 22 ovarian cancer cases, 17 uterine cancer cases, one peritoneal, three fallopian tube, and one patient with synchronous fallopian tube and uterine cancer. Patient/tumor-specific mutations were identified using whole-exome and targeted gene sequencing and ctDNA levels quantified using droplet digital PCR. CtDNA was detected in 93.8% of patients for whom probes were designed and levels were highly correlated with CA-125 serum and computed tomography (CT) scanning results. In six patients, ctDNA detected the presence of cancer even when CT scanning was negative and, on average, had a predictive lead time of seven months over CT imaging. Most notably, undetectable levels of ctDNA at six months following initial treatment was associated with markedly improved progression free and overall survival. CONCLUSIONS:Detection of residual disease in gynecologic, and indeed all cancers, represents a diagnostic dilemma and a potential critical inflection point in precision medicine. This study suggests that the use of personalized ctDNA biomarkers in gynecologic cancers can identify the presence of residual tumor while also more dynamically predicting response to treatment relative to currently used serum and imaging studies. Of particular interest, ctDNA was an independent predictor of survival in patients with ovarian and endometrial cancers. Earlier recognition of disease persistence and/or recurrence and the ability to stratify into better and worse outcome groups through ctDNA surveillance may open the window for improved survival and quality and life in these cancers

    Undetectable levels of ctDNA following initial treatment are associated with improved survival.

    No full text
    <p>Kaplan–Meier analysis of progression-free (left panel) and overall survival (right panel) between individuals with undetectable (ctDNA = 0; blue lines) and detectable ctDNA (≥ 1; red lines). Significant differences in progression-free survival (p = 0.001) and overall survival (p = 0.0194) between undetectable and detectable groups.</p
    corecore