108 research outputs found

    Markerless 3D human pose tracking through multiple cameras and AI: Enabling high accuracy, robustness, and real-time performance

    Full text link
    Tracking 3D human motion in real-time is crucial for numerous applications across many fields. Traditional approaches involve attaching artificial fiducial objects or sensors to the body, limiting their usability and comfort-of-use and consequently narrowing their application fields. Recent advances in Artificial Intelligence (AI) have allowed for markerless solutions. However, most of these methods operate in 2D, while those providing 3D solutions compromise accuracy and real-time performance. To address this challenge and unlock the potential of visual pose estimation methods in real-world scenarios, we propose a markerless framework that combines multi-camera views and 2D AI-based pose estimation methods to track 3D human motion. Our approach integrates a Weighted Least Square (WLS) algorithm that computes 3D human motion from multiple 2D pose estimations provided by an AI-driven method. The method is integrated within the Open-VICO framework allowing simulation and real-world execution. Several experiments have been conducted, which have shown high accuracy and real-time performance, demonstrating the high level of readiness for real-world applications and the potential to revolutionize human motion capture.Comment: 19 pages, 7 figure

    A Self-Tuning Impedance-based Interaction Planner for Robotic Haptic Exploration

    Full text link
    This paper presents a novel interaction planning method that exploits impedance tuning techniques in response to environmental uncertainties and unpredictable conditions using haptic information only. The proposed algorithm plans the robot's trajectory based on the haptic interaction with the environment and adapts planning strategies as needed. Two approaches are considered: Exploration and Bouncing strategies. The Exploration strategy takes the actual motion of the robot into account in planning, while the Bouncing strategy exploits the forces and the motion vector of the robot. Moreover, self-tuning impedance is performed according to the planned trajectory to ensure compliant contact and low contact forces. In order to show the performance of the proposed methodology, two experiments with a torque-controller robotic arm are carried out. The first considers a maze exploration without obstacles, whereas the second includes obstacles. The proposed method performance is analyzed and compared against previously proposed solutions in both cases. Experimental results demonstrate that: i) the robot can successfully plan its trajectory autonomously in the most feasible direction according to the interaction with the environment, and ii) a compliant interaction with an unknown environment despite the uncertainties is achieved. Finally, a scalability demonstration is carried out to show the potential of the proposed method under multiple scenarios.Comment: 8 pages, 9 figures, accepted for IEEE Robotics and Automation Letters (RA-L) and IEEE/RSJ International Conference on Intelligent Robots and Systems 202

    A Personalizable Controller for the Walking Assistive omNi-Directional Exo-Robot (WANDER)

    Full text link
    Preserving and encouraging mobility in the elderly and adults with chronic conditions is of paramount importance. However, existing walking aids are either inadequate to provide sufficient support to users' stability or too bulky and poorly maneuverable to be used outside hospital environments. In addition, they all lack adaptability to individual requirements. To address these challenges, this paper introduces WANDER, a novel Walking Assistive omNi-Directional Exo-Robot. It consists of an omnidirectional platform and a robust aluminum structure mounted on top of it, which provides partial body weight support. A comfortable and minimally restrictive coupling interface embedded with a force/torque sensor allows to detect users' intentions, which are translated into command velocities by means of a variable admittance controller. An optimization technique based on users' preferences, i.e., Preference-Based Optimization (PBO) guides the choice of the admittance parameters (i.e., virtual mass and damping) to better fit subject-specific needs and characteristics. Experiments with twelve healthy subjects exhibited a significant decrease in energy consumption and jerk when using WANDER with PBO parameters as well as improved user performance and comfort. The great interpersonal variability in the optimized parameters highlights the importance of personalized control settings when walking with an assistive device, aiming to enhance users' comfort and mobility while ensuring reliable physical support.Comment: 6 pages, 4 figures, IEEE International Conference on Robotics and Automation (2024

    Robot-Assisted Navigation for Visually Impaired through Adaptive Impedance and Path Planning

    Full text link
    This paper presents a framework to navigate visually impaired people through unfamiliar environments by means of a mobile manipulator. The Human-Robot system consists of three key components: a mobile base, a robotic arm, and the human subject who gets guided by the robotic arm via physically coupling their hand with the cobot's end-effector. These components, receiving a goal from the user, traverse a collision-free set of waypoints in a coordinated manner, while avoiding static and dynamic obstacles through an obstacle avoidance unit and a novel human guidance planner. With this aim, we also present a legs tracking algorithm that utilizes 2D LiDAR sensors integrated into the mobile base to monitor the human pose. Additionally, we introduce an adaptive pulling planner responsible for guiding the individual back to the intended path if they veer off course. This is achieved by establishing a target arm end-effector position and dynamically adjusting the impedance parameters in real-time through a impedance tuning unit. To validate the framework we present a set of experiments both in laboratory settings with 12 healthy blindfolded subjects and a proof-of-concept demonstration in a real-world scenario.Comment: 7 pages, 7 figures, submitted to IEEE International Conference on Robotics and Automation, for associated video, see https://youtu.be/B94n3QjdnJ

    Crossed-beam universal-detection reactive scattering of radical beams characterized by laser-induced-fluorescence: the case of C2 and CN

    No full text
    International audienceWe have generated continuous supersonic beams of dicarbon (C2) and cyano (CN) radicals by a high-pressure radio-frequency discharge beam source starting from dilute mixtures in rare gases of suitable precursor molecules. We have subsequently characterized their internal quantum state distributions by laser-induced-fluorescence (LIF) in a new crossed molecular beam-laser apparatus. We have used these supersonic beams to study the reactive scattering of C2 and CN radicals with unsaturated hydrocarbons. We report here on the C2 and CN radical beam characterization by LIF and on dynamics studies of the reactions CN + C2H2 (acetylene) and CN + CH3CCH (methylacetylene) by the crossed molecular beam scattering technique with universal mass spectrometric detection and time-of-flight analysis. The role of CN rovibrational excitation on the dynamics of the CN + C2H2 reaction is discussed with reference to previous dynamics and kinetics studies. These reactions are of interest in the chemistry of planetary atmospheres (Titan) and the interstellar medium as well as in combustion

    Local regularity for fractional heat equations

    Full text link
    We prove the maximal local regularity of weak solutions to the parabolic problem associated with the fractional Laplacian with homogeneous Dirichlet boundary conditions on an arbitrary bounded open set ΩRN\Omega\subset\mathbb{R}^N. Proofs combine classical abstract regularity results for parabolic equations with some new local regularity results for the associated elliptic problems.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0756

    Effects of sampling intensity and biomass levels on the precision of acoustic surveys in the Mediterranean Sea

    Get PDF
    Acoustic surveys represent the standard fishery-independent method worldwide for evaluating the biomass and spatial distribution of small pelagic fish populations. Considering the peculiarities of the spatial behaviour of pelagic fishes, the efficiency of the survey design in determining their biomass and spatial distribution is related to its ability to capture the portion of the patches accounting for larger part of the total biomass. Yet, the spatial structure of the patches could be strongly influenced by ecosystem characteristics as well as by changes in total biomass related to a density-dependent mechanism. This is of particular interest for anchovy and sardine which are known for their wide fluctuations and high sensitivity to the environment. In this study, we analysed the efficiency of acoustic surveys, targeting European anchovy (Engraulis encrasicolus) and European sardine (Sardina pilchardus), in 10 different areas of the Mediterranean Sea across three years of different biomass levels. Using the geostatistical Coefficient of Variation (CVgeo) of the average occurrence probability of high/medium density values, we showed different patterns in terms of survey design efficiency among areas and species. Anchovy usually showed lower CVgeo than sardine, but in the Alboran Sea. In 4 out of 20 cases, CVgeo values showed a consistent decrease with increasing biomass while in the remaining cases the CVgeo did not follow any clear pattern suggesting the presence of important environmental effects. Higher survey design efficiency was found in high productive sectors influenced by river run-off, letting us to hypothesize that higher productivity along with the presence of well-localized enrichment mechanisms could favour a spatially consistent distribution and coherent organization of fish population leading to higher precision estimates with a given transect design. While most surveys displayed CVgeo close to 10% or less even at low biomass, evidencing generally good performances of the survey design, a few areas exhibited higher CVgeo, yielding discussions about a potential need to decrease the inter-transect distance, always keeping in mind that survey should be as synoptic as possible.Versión del edito

    Catch of pelagic hauls in Mediterranean acoustic surveys: Is it the same between day and night?

    Get PDF
    Fish sampling is a critical aspect of acoustic surveys, because it is directly related to the “transformation” of echo into species biomass and subsequently affects the accuracy of acoustic estimates. In the present study, we investigated the differences between day and night sampling in a) the catch composition through certain diversity indices and b) the length frequency distribution of anchovy and sardine using catch data of pelagic hauls collected from four different regions of the European Mediterranean waters. In addition, the possible bias in trawl efficiency due to sampling time and the possible error introduced in acoustic estimates were investigated. No statistically significant differences were found between day and night in any of the parameters examined. The results showed that a more flexible strategy can be adopted to reduce the duration and the cost of acoustic sampling for small pelagic species. The advantages and disadvantages of the two sampling strategies are discussedPublicado

    Density dependence in the spatial behaviour of anchovy and sardine across Mediterranean systems

    Get PDF
    A spatial indicator—the spreading area index—is used to describe anchovy and sardine spatial distribution in relation to biomass variation and to look for ecosystem differences within the Mediterranean basin. Specifically, the variation in the spreading area index in relation to biomass was examined for different areas of the Mediterranean Sea (i.e. Aegean Sea, western Adriatic Sea, Strait of Sicily, Gulf of Lion, and Spanish Mediterranean waters). In order to capture the spatial variability of the population at different levels of fish density, acoustic survey data for the years of highest, lowest, and intermediate abundance were used. In a subsequent step standardized values of spreading area and biomass were estimated to allow comparisons. Results showed pronounced area differences. A significant relationship was revealed in the case of anchovy for areas with extended continental shelf (i.e. Aegean Sea, Adriatic Sea, and Gulf of Lion), indicating an increase in biomass with an increase in the spreading area. No relationship was found for areas dominated by narrow continental shelf and strong currents (i.e. Spanish Mediterranean waters and the Strait of Sicily). With regard to sardine, an increase in biomass was followed by an increase in the spreading area when estimates from the Aegean Sea, the Adriatic Sea, and the Strait of Sicily were considered together. The relationship was even more Abstracts–Theme Session B 9 pronounced when analysis was limited to the Aegean Sea and the Strait of Sicily. No relationship was found for the Spanish Mediterranean waters and the Gulf of Lion. This clearly implies that spatial indicators should be integrated into ecosystem management, taking into account that they can be area‐ or ecosystem‐dependent
    corecore