259 research outputs found

    DECONVOLUTION-BASED PHYSIOLOGICAL SIGNAL SIMPLFICATION FOR PERIODICAL PARAMETER ESTIMATION

    Get PDF
    The estimation of physiological parameters from raw sensor signals is absolutely crucial in modern clinical applications. A wide variety of these parameters incorporate a periodic nature, such as the heart rate or the respiration rate. This property can be exploited for their estimation. Particularly challenging is the processing of novel, unobtrusive measurement techniques, which are characterized by complex, time-varying waveforms. Simple peak detection algorithms are often not suited for these applications. One way to tackle these challenges is a preprocessing step for the simplification of the physiological signals. A novel deconvolution based approach for this preprocessing is introduced and evaluated in this paper. Two deconvolution methods are regarded, the “Minimum Entropy Deconvolution” (MED) and the “Maximum Correlated Kurtosis Deconvolution” (MCKD). Important parameters are outlined and examined. Finally, the methods are validated using artificial as well as real clinical signals to demonstrate their potential

    Effectiveness of Air Cleaning Systems in Crushing Zones of Dressing Mills

    Get PDF
    Body sensor networks (BSN) are an important research topic due to various advantages over conventional measurement equipment. One main advantage is the feasibility to deploy a BSN system for 24/7 health monitoring applications. The requirements for such an application are miniaturization of the network nodes and the use of wireless data transmission technologies to ensure wearability and ease of use. Therefore, the reliability of such a system depends on the quality of the wireless data transmission. At present, most BSNs use ZigBee or other IEEE 802.15.4 based transmission technologies. Here, we evaluated the performance of a wireless transmission system of a novel BSN for biomedical applications in the 433 MHz ISM band, called Integrated Posture and Activity NEtwork by Medit Aachen (IPANEMA) BSN. The 433 MHz ISM band is used mostly by implanted sensors and thus allows easy integration of such into the BSN. Multiple measurement scenarios have been assessed, including varying antenna orientations, transmission distances and the number of network participants. The mean packet loss rate (PLR) was 0.63% for a single slave, which is comparable to IEEE 802.15.4 BSNs in the proximity of Bluetooth or WiFi networks. Secondly, an enhanced version is evaluated during on-body measurements with five slaves. The mean PLR results show a comparable good performance for measurements on a treadmill (2.5%), an outdoor track (3.4%) and in a climate chamber (1.5%)

    Взаимодействие аминов с виниловыми эфирами

    Get PDF

    Embedded disposable functionalized electrochemical biosensor with a 3D-printed flow cell for detection of hepatic oval cells (HOCs)

    Get PDF
    Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection

    Direct and dynamic detection of HIV-1 in living cells.

    Get PDF
    In basic and applied HIV research, reliable detection of viral components is crucial to monitor progression of infection. While it is routine to detect structural viral proteins in vitro for diagnostic purposes, it previously remained impossible to directly and dynamically visualize HIV in living cells without genetic modification of the virus. Here, we describe a novel fluorescent biosensor to dynamically trace HIV-1 morphogenesis in living cells. We generated a camelid single domain antibody that specifically binds the HIV-1 capsid protein (CA) at subnanomolar affinity and fused it to fluorescent proteins. The resulting fluorescent chromobody specifically recognizes the CA-harbouring HIV-1 Gag precursor protein in living cells and is applicable in various advanced light microscopy systems. Confocal live cell microscopy and super-resolution microscopy allowed detection and dynamic tracing of individual virion assemblies at the plasma membrane. The analysis of subcellular binding kinetics showed cytoplasmic antigen recognition and incorporation into virion assembly sites. Finally, we demonstrate the use of this new reporter in automated image analysis, providing a robust tool for cell-based HIV research

    Transforming space with non-Hermitian dielectrics

    Full text link
    Coordinate transformations are a versatile tool to mould the flow of light, enabling a host of astonishing phenomena such as optical cloaking with metamaterials. Moving away from the usual restriction that links isotropic materials with conformal transformations, we show how non-conformal distortions of optical space are intimately connected to the complex refractive index distribution of an isotropic non-Hermitian medium. Remarkably, this insight can be used to circumvent the material requirement of working with refractive indices below unity, which limits the applications of transformation optics. We apply our approach to design a broadband unidirectional dielectric cloak, which relies on non-conformal coordinate transformations to tailor the nonHermitian refractive index profile around a cloaked object. Our insights bridge the fields of two-dimensional transformation optics and non-Hermitian photonics

    Revolution analysis of three-dimensional arbitrary cloaks

    Full text link
    We extend the design of radially symmetric three-dimensional invisibility cloaks through transformation optics to cloaks with a surface of revolution. We derive the expression of the transformation matrix and show that one of its eigenvalues vanishes on the inner boundary of the cloaks, while the other two remain strictly positive and bounded. The validity of our approach is confirmed by finite edge-elements computations for a non-convex cloak of varying thickness.Comment: 6 pages, 4 figure

    Cloaking dielectric spherical objects by a shell of metallic nanoparticles

    Full text link
    We show that dielectric spheres can be cloaked by a shell of amorphously arranged metallic nanoparticles. The shell represents an artificial medium with tunable effective properties that can be adjusted such that the scattered signals of shell and sphere almost cancel each other. We provide an analytical model for the cloak design and prove numerically that the cloak operates as desired. We show that more than 70% of the scattered signal of the sphere can be suppressed at the design wavelength. Advantages and disadvantages of such a cloak when compared to other implementations are disclosed.Comment: 14 pages, 6 figure
    corecore