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Abstract 
The estimation of physiological parameters from raw sensor signals is absolutely crucial in modern clinical 
applications. A wide variety of these parameters incorporate a periodic nature, such as the heart rate or the respiration 
rate. This property can be exploited for their estimation. Particularly challenging is the processing of novel, 
unobtrusive measurement techniques, which are characterized by complex, time-varying waveforms. Simple peak 
detection algorithms are often not suited for these applications. One way to tackle these challenges is a preprocessing 
step for the simplification of the physiological signals. A novel deconvolution based approach for this preprocessing is 
introduced and evaluated in this paper. Two deconvolution methods are regarded, the “Minimum Entropy 
Deconvolution” (MED) and the “Maximum Correlated Kurtosis Deconvolution” (MCKD). Important parameters are 
outlined and examined. Finally, the methods are validated using artificial as well as real clinical signals to demonstrate 
their potential. 
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Introduction 
 
Nowadays, a wide variety of vital signs are measured 

in the clinical environment. Various of these are based 
on periodic physiological processes, such as the heart 
rate and the respiration rate. A reliable measurement of 
these periodical parameters is crucial for clinical 
decisions. 

On the other hand, there is a trend towards 
monitoring of vital signs without supervision of clinical 
staff in the home environment of patients. Novel, easy 
to apply measurement systems are required for these 
conditions. One promising technique is ballistocardio-
graphy, which measures the mechanical activity of the 
heart on the body surface, for example by pressure 
sensors. It has the capability to unobstructively 
measure the heart activity. This comes at the cost of a 
more complex waveform which impedes simple peak 
detection algorithms for the measurement of the heart 
rate. 

Therefore, more sophisticated techniques are 
required. Various different approaches have been 
published in the previous years. Some operate in the 
frequency domain, e.q. [6], and some are correlation-

based methods [3]. These methods also differ whether 
they solely measure an averaged interbeat interval or 
determine the individual heart beat locations. 

In this paper, a novel approach for periodic parameter 
estimation using deconvolution techniques is proposed 
and investigated. The basic idea of their application is 
illustrated in Fig. 1.  

 
Fig. 1: Basic idea of the deconvolution-based methods 
for the example of the heart rate. 

 
The fundamental assumption is that each heart beat is 

represented by a Dirac impulse. An FIR filter models 
the specific measurement setup and the physiological 
influences. It varies between different techniques (such 
as ECG, PPG or BCG), between different patients and 
also between different points in time. The measured 
signal contains a convolution of the impulse sequence 
with this FIR filter, depicted as the last block to the 
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right. Hence, the deconvolution technique tries to 
estimate the inverse of the FIR filter to compensate its 
influence and regain the impulse sequence. This 
impulse sequence is then further processed. 

Two distinct deconvolution techniques are 
investigated, the Minimum Entropy Deconvolution 
(MED) and the Maximum Correlated Kurtosis 
Deconvolution (MCKD). The MED was introduced by 
Ralph A. Wiggins in the year 1978 for the analysis of 
seismic reflection recordings [1]. It is mainly used in 
the field of geophysics and seismic signal analysis. In 
2012, Geoff McDonald published a paper on a novel 
variant of minimum entropy deconvolution for periodic 
signals, the Maximum Correlated Kurtosis Decon-
volution [2]. It exploits the periodic nature of the input 
signals and was originally designed for gear tooth chip 
fault detection. 

This paper is structured into a methods section, where 
the deconvolution techniques are presented, a results 
section with different experiments on the potential and 
limitations of the methods, their interpretation in the 
discussion section, and an overall conclusion in the last 
section. 

 
Methods 
 

The application of deconvolution techniques for 
interbeat interval estimation is based on the assumption 
that the heart beats are represented by an impulse 
sequence , which is altered by an FIR filter . The 
measurement signal  is the convolution of the two 
signals.  

 (1) 
 
The deconvolution attempts to estimate an inverse 

filter  to reverse this process.    

 (2) 
 
Therefore, the final goal is to regain the assumed 

impulse sequence , where each impulse corresponds to 
one heartbeat. In the ideal case,  is exactly the inverse 
of . The challenge is to estimate a filter , which 
creates a good impulse sequence estimate  only based 
on the knowledge of  without any further information 
about  and . 

In the following, two methods are presented, which 
are based on the assumption of a simple, impulse-like 
target signal . 

 
 

Minimum Entropy Deconvolution (MED) 
 
Suppose the inputs are labeled by indices 

 with  the number of channels and 
 with  the number of samples per 

channel.  corresponds to the number of filter 

samples. The deconvolution in eq. (2) may then be 
expressed in more detail as follows.  

 
(3) 

 
The impulse-like structure and thereby the simplicity 

of the input can be measured by different norms. 
Wiggins used the varimax norm given in eq. (4), which 
is based on the varimax rotation from the field of factor 
analysis (see [8] for further information). It is the sum 
of normalized squares of the variances of the samples 
(see [1]).  

 

 

(4) 

 
In order to find the filter which maximizes this 

simplicity norm , it is differentiated with respect to 
the filter coefficients  and set to zero.  

 

 
(5) 

 
This results in the following eq. (6). For the detailed 

derivation the reader is referred to [1].  
 

 
(6) 

 
with 

 
or in a compact matrix form as  

 (7) 
 

 is an autocorrelation matrix in Toeplitz form of 
the input signal .  is a column vector of cross 
correlations of the input  and the cubed filter outputs 

.  is a column vector of the filter coefficients. The 
weighting factors  and  are scalar values depending 
on the channel . They are defined as   and 

. 

A closed form solution for  is not possible. 
However, eq. (7) allows an iterative procedure based 
on the well-known Levinson-Durbin-Algorithm to 
calculate the filter . A convergence towards the 
optimal impulse sequence is not guaranteed and 
depends on different parameters, which are addressed 
later in this paper. 

One of the major drawbacks of the MED for the 
application on periodical signals is the fact that the 
maximum of the norm is given for one single peak as 
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illustrated in Fig. 2. It may therefore happen that the 
techniques return a filter which creates an output signal 
with one large peak rather than the desired periodic 
impulses. Therefore, we are also considering the 
following method named MCKD. 
 
Maximum Correlated Kurtosis Deconvolution 
(MCKD) 
 

The MCKD method is based on the correlated 
kurtosis (CK) norm shown in eq. (8).  

 

 

(8) 

 
The norm consists of a multiplication of the signal 

with a shifted version of itself for . For higher 
orders, the signal is multiplied with  shifted versions. 
It combines the kurtosis calculation with the idea of 
correlation and thereby utilizes the periodic character 
of the input signal. The norm creates higher values in 
the presence of periodic impulses with a preselected 
period of interest . For higher shift orders , the 
sensitivity for the selected period of interest  is 
increased. 

To get an impression of the norm values for different 
cases, an example is provided in Fig. 2 and Tab. 1. It 
shows different input signals, which are examined. The 
corresponding Varimax (V) and Correlated Kurtosis 
(CK) values for the example signals are given in 
Tab. 1. The CK was calculated with a period of interest 
of  and a shift of . One can observe that 
the V-norm is maximal in case four, when only one 
large peak is present and the CK-norm reaches its 
maximum for case five, when the selected period fits 
the impulse sequences. 

 
Fig. 2: Six example input signals for demonstrating 
their effect on the different norms. The corresponding 
norm values are given in Tab. 1. The image is inspired 
by [2]. 

Tab. 1: Corresponding norm values for Fig. 2. 

 

Similar to the derivation of the MED algorithm, the 
CK norm is differentiated with respect to the filter 
coefficients  and set to zero. This likewise results in 
an iterative procedure given by the matrix equation (9). 
For the detailed derivation the reader is referred to [2]. 

 
(9) 

with  

 

(10) 

 

 

(11) 

and 

 

(12) 

The result shown in eq. (9) requires an iterative 
calculation of the filter . The first iteration starts with 
a beforehand specified initial filter , a predefined 
period of interest  and a shift order . In each 
iteration  the filter output  is determined by apply 
the previous filter . Then the other variables, 
namely , , , are calculated in order to 
determine a new filter . This procedure is repeated 
until the solution converged. 

 
Iterative Procedure 
 

The convergence of the iterative algorithms is 
illustrated for the MED method in Fig. 3. This also 
gives an impression of the procedure for the MCKD 
method, as it is very similar.  

Here, the initial filter  is simply a Dirac impulse. 
Therefore, the first output  reproduces the input . 
Then a new filter  is designed by applying eq. (7) for 
the MED and eq. (9) for the MCKD method. The 
resulting output  is shown in Fig. 3. It is observable 
that the neighboring peaks have already been 
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attenuated compared to the input signal . The main 
peaks, on the other hand, were emphasized, which is 
also reflected by the increasing norm values in Tab. 2.  

After convergence, the final result of the MED 
method, given by , is quite similar to the ideal 
impulse sequence. Looking at the norm values the 
reader can observe that the method tends to maximize 
these in order to create impulse sequences. This 
example illustrates the convergence of the algorithm 
towards a good estimate of the impulse sequence. 
 

 
Fig. 3: Various stages of the deconvolution process 
with the MED method. Shown are the input signal , 
the output  after the second iteration and the final 
output  after convergence. The last row contains 
the ideal impulse sequence as a reference. The 
corresponding norm values are given in Tab. 2. 

 

Tab. 2: Corresponding norm values for Fig. 3. 
 

 
 

Results 
 
The following section addresses the parameter 

influences on the deconvolution result. Furthermore, 
two short evaluations are carried out with artificial and 
real clinical signals to investigate the peak detection 
and interbeat interval estimation capabilities. 
 
Influences on the Deconvolution 

 
There are some parameters that need to be chosen 

and several influences to be kept in mind, when using 
the MED and the MCKD algorithms. These are, 
namely, the local validity of the filter estimate, the 
choice of the initial filter , as well as the filter length. 
Additionally, the MCKD is influenced by a 
preassigned period and M-shift parameter. In this 
paper, only the most significant influences will be 
outlined. 

One important parameter both methods have in 
common is the filter length. A shorter filter length 
limits the capabibility of precise modeling of longer 
wavelets, but decreases the computational effort. With 
a longer filter length, the procedure tends to 
misestimate the filter and only reaches relatively poor 
local maxima. Additionally, it increases the 
computational effort. The influence is illustrated in 
Fig. 4 for three different filter lengths. The input signal 
was a clean sequence with varying pitch period and 
absence of any noise.  

 

 
 
Fig. 4: Influence of the filter length on the estimation of 
the inverse filter estimate  and the MED output. 

 
The left column contains the inverse filter estimates 

 and the right the corresponding output of the MED 
method. In the first row, the ideal filter estimate of 
length 100 samples and the ideal impulse sequence are 
given as a reference. It is easy to observe that an 
underestimation of the filter length, as shown in the 
second row, leads to an unsatisfying filter and impulse 
train estimate. The filter  is too short to adequately 
adapt to the assumed FIR filter . An overestimation, 
as shown in the bottom row, also leads to insufficient 
estimates. The algorithm overfits the filter to the given 
signal and is no longer able to consider individual 
intervals. Solely an adequately chosen filter length 
leads to satisfying results as shown in the third row 
from the top. 

Another aspect for the estimation of a longer impulse 
signal is the local validity of the filter. The waveform is 
likely to vary during a measurement. Reasons for this 
are changes is the measurement modalities as well as 
background noise influences. Therefore it is necessary 
to perform local blockwise processing. In order to 
avoid sharp edges at the block borders the use of a 
window function, which attenuates the borders of each 
segment, is crucial. The employed window function is 
illustrated in Fig. 5 with the attenuating area at the 
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borders and the passband in the middle part (according 
to [7] p. 55).  

 
Fig. 5: Window function with 80% plateau of 
unchanged signal. The grey colored edges contain the 
attenuated signal parts. 

 
The attenuated parts are cut off after the processing 

and need to be considered within an overlap of 
successive blocks. Furthermore, additional overlapping 
can lead to better estimates and to an improved 
robustness. 

The MCKD contains additional parameters, of which 
solely the influence of the period estimate is regarded 
in this paper. The impact of different period parameters 
is depicted in Fig. 6. In order to adequately 
demonstrate the influence, an input signal with a fixed 
period is used and additive white Gaussian noise 
(AWGN) with an SNR of 10dB was added.  

 
 

Fig. 6: Influence of the period parameter estimation on 
the Correlated Kurtosis (CK) and the MCKD output. 
The current period position in the CK is marked with 
red crosses. The Shift parameter  is set to . 

 
The Correlated Kurtosis depending on the period  

and the MCKD output are shown. The selected period 
 is marked in the CK plot by a red cross. The cases of 

 and  do not give any usable results. This 
is especially remarkable as for  and  the 
MCKD is equal to the MED. If the period is adequately 
chosen near the real interval of 100 samples, the output 
contains emphasized peaks as expected. This small 
experiment shows that a suitable selection of  is 

necessary to gain good results. In order to adapt to this 
additional parameter, for each frame a separate period 
estimation is performed with the Correlated Kurtosis 
norm. By this, the period  is automatically adapted. 

 
Quantitative Analysis with Artificial Signals 

 
After introducing the different influences on the 

deconvolution, a quantitative analysis was performed 
on how good the methods reconstruct an impulse-like 
signal and how well the period can be estimated. 

To create a controlled environment for examinations, 
an artificial BCG signal with 10000 samples and 112 
simulated heart beats was generated. It is composed by 
a combination of sine waves and a sawtooth signal 
based on [5]. Thereafter, different levels of white 
Gaussian noise were added to the signal to evaluate the 
robustness of the methods. These levels define the 
Signal-to-Noise Ratio (SNR). 

In order to determine the necessary SNR level for a 
good estimation, the peak detection rate (PDR) and the 
peak misdetection rate (PMR) are valuable measures. 
The PDR indicates how many of the reference peaks 
have been found by the algorithm and the PMR 
represents how many of the detected peaks do not 
correspond to a reference peak and are therefore falsely 
detected. 

Fig. 8 shows how the methods perform regarding 
these metrics. From an SNR of 4 dB on both methods 
are able to create an output signal, where 100 % of the 
reference peaks are found. However, both incorporate a 
slight fluctuation concerning the PMR. This means that 
there are some falsely detected peaks. One must keep 
in mind that the PDR and the PMR strongly depend on 
the peak detection algorithm and therefore contain an 
additional influence. Still, it belongs to the process 
chain and should therefore also be regarded. Further 
tuning of the parameters of the peak detection 
algorithms will probably result in more reliable results. 
For this investigation the findpeaks algorithm of 
MATLAB 2012a was chosen.  

 
Fig. 8: Peak Detection Rate (PDR) and Peak 
Misdetection Rate (PDR) depending on the SNR. 
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Eventually, the interbeat interval is the parameter of 
interest. In order to judge when an estimation is 
satisfying, the mean interbeat interval error ( ) is 
regarded. It incorporates all reasonable interbeat 
intervals and measures the error with respect to the 
reference. In this case, the reference is given by the 
perfect knowledge of the artificial signal. 

Fig. 9 supports the conclusions already drawn from 
Fig. 8. The minimum SNR to get appropriate 
estimations is 4 dB. From this value on,  lies 
consistently below 4 %.  

 
Real Clinical Signals 
 

In the following short evaluation, the capability of 
the presented deconvolution methods with respect to 
real signals is regarded. For this purpose, physiological 
signals are taken from a sleep lab database [4]. The 
database contains simultaneous recordings of ECG, 
PPG and BCG sensors. As commonly accepted, the 

 
Fig. 9: Mean beat-to-beat interval error ( ) depending 
on the SNR. 

 
ECG sensor defines the Gold Standard for interbeat 

interval measurement and is used as the reference. An 
artifact free segment of  s with 853 detected 
heart beats was chosen for the evaluation. 

Tab. 3 contains the results after processing the input 
signals of two different sensors with both methods. The 
parameterization of the methods was done as follows. 
For a sampling frequency of 200 Hz, a reasonable heart 
rate between 40 and 160 bpm would result in a period 
length between 75 and 300 samples. Therefore, the 
MED and the MCKD filter length were chosen to be 
100 samples. The overlapping of neighboring frames of 
the size of 1500 samples is 75 % for the MED, which 
corresponds to a feed rate of 375 samples, and 50 % for 
the MCKD, which corresponds to a feedrate of 750 
samples. The framesize is chosen to guarantee the 
coverage of five full periods with the maximum period 
length of 300 samples. Consequently, the M-shift of 
the MCKD is set to 4. To avoid sharp edges, the earlier 
presented window function with an 80 % plateau of 
unattenuated signal part is used. 

The evaluation parameters are grouped into interval-
based and peak-based measures. The mean beat-to-beat 
interval error ( ), which describes the mean deviation 
from the interbeat interval reference, and the 95th error 
percentile ( ), which represents the spread of the 
error, embody the interval-based measures. Only 
reasonable interbeat intervals are considered for this 
metric, described by a period length between 75 and 
300 samples for this example. On the other hand, the 
Peak Detection Rate (PDR) and the Peak Misdetection 
Rate (PMR) characterize how succesful the peaks are 
detected.  

 
The PDR is over 93 % for all cases and at the same 

time, the PMR is less than 2.5 % for all but one case. 
This indicates that most of the heart beats and the 
corresponding peaks have been found and only little 
misdetections happened. At the same time, the interval-
based parameters are all below 2 %, except for the 
BCG sensor in combination with the MCKD method. 
Overall, most of the results are well within very good 
boundaries and indicate the applicability of these 
methods for physiological signals. 

 

Tab. 3: Interval-based and peak-based measures for an 
artifact free segment of  s with 853 detected 
heart beats. 
 

 
 
 

Discussion 
 
The results of the evaluation with real clinical data 

depict good estimation performance with regard to the 
reference. Consequently, they demonstrate the 
appropriateness of deconvolution methods for 
physiological signal simplification in order to obtain 
interbeat interval estimates. 

However, adequate selection of the presented 
method’s parameters is crucial in order to obtain usable 
impulse sequences. As the deconvolution methods are 
not guaranteed to converge to the absolute maximum, 
the parameters must define a suitable initial state. If, 
for example, the filter length is estimated poorly, the 
method is likely deteriorating the signal rather than 
improving it. The applicability is therefore limited for 
cases in which a careful selection of the parameters is 
difficult. This is the case if large variations in 
reasonable interval values complicate an adequate 
parameter selection. 
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The overall goal of the MED and the MCKD method 
is to create an output signal, which maximizes the 
corresponding norm. Both norms are taking high 
values for impulse sequences with sharp spikes and 
therefore lead to the desired output signal. However, 
the estimated filter  solely has the purpose to create 
these output signals. This is revealed especially in the 
case of noise interfering with the input signals. The 
estimated filter  will then have an arbitrary and no 
meaningful shape, as the goal of the method is to 
achieve large spikes. Therefore an interpretation of this 
output is not useful. 

In general, the presented methods provide precise 
heart beat positions connected with the interbeat 
intervals rather than averaged estimations. Therefore 
they establish the possibility to identify individual 
irregular periods or can be used for long term heart rate 
variability measurements. 

Another advantage is the independence of the 
method of the given signal morphology. 

 
Conclusion 

 
We presented a novel deconvolution-based approach 

for the preprocessing of physiological signals in order 
to estimate periodic vital signs.  

Two iterative deconvolution methods, which are 
based on the maximization of a simplicity norm, are 
introduced; the Minimum Entropy Deconvolution 
(MED) based on the varimax norm and the Maximum 
Correlated Kurtosis Deconvolution (MCKD) based on 
the correlated kurtosis norm. 

Both methods have been evaluated with respect to 
the influence of their parameters and the necessity for a 
careful choice of these was motivated. A short 
investigation on artificial BCG signals with additive 
white Gaussian noise indicated a good peak detection 
rate for SNRs higher than 4 dB. Furthermore, an 
evaluation with real clinical signals from one PPG and 
one BCG sensor, depicted a high peak detection 
performance and a precise interbeat interval estimation 
with less than 2 % mean error for almost all regarded 
cases. In general, the deconvolution methods have 
shown promising results for signal simplification to 
estimate periodic parameters.  
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