3,403 research outputs found

    Fiber-optical analogue of the event horizon

    Full text link
    The physics at the event horizon resembles the behavior of waves in moving media. Horizons are formed where the local speed of the medium exceeds the wave velocity. We use ultrashort pulses in microstructured optical fibers to demonstrate the formation of an artificial event horizon in optics. We observed a classical optical effect, the blue-shifting of light at a white-hole horizon. We also show by theoretical calculations that such a system is capable of probing the quantum effects of horizons, in particular Hawking radiation.Comment: MEDIA EMBARGO. This paper is subject to the media embargo of Scienc

    Superantenna made of transformation media

    Full text link
    We show how transformation media can make a superantenna that is either completely invisible or focuses incoming light into a needle-sharp beam. Our idea is based on representating three-dimensional space as a foliage of sheets and performing two-dimensional conformal maps on each shee

    Perfect imaging: they don't do it with mirrors

    Full text link
    Imaging with a spherical mirror in empty space is compared with the case when the mirror is filled with the medium of Maxwell's fish eye. Exact time-dependent solutions of Maxwell's equations show that perfect imaging is not achievable with an electrical ideal mirror on its own, but with Maxwell's fish eye in the regime when it implements a curved geometry for full electromagnetic waves

    Reply on the ``Comment on `Loss-error compensation in quantum- state measurements' ''

    Get PDF
    The authors of the Comment [G. M. D'Ariano and C. Macchiavello to be published in Phys. Rev. A, quant-ph/9701009] tried to reestablish a 0.5 efficiency bound for loss compensation in optical homodyne tomography. In our reply we demonstrate that neither does such a rigorous bound exist nor is the bound required for ruling out the state reconstruction of an individual system [G. M. D'Ariano and H. P. Yuen, Phys. Rev. Lett. 76, 2832 (1996)].Comment: LaTex, 2 pages, 1 Figure; to be published in Physical Review

    Switching Exciton Pulses Through Conical Intersections

    Full text link
    Exciton pulses transport excitation and entanglement adiabatically through Rydberg aggregates, assemblies of highly excited light atoms, which are set into directed motion by resonant dipole-dipole interaction. Here, we demonstrate the coherent splitting of such pulses as well as the spatial segregation of electronic excitation and atomic motion. Both mechanisms exploit local nonadiabatic effects at a conical intersection, turning them from a decoherence source into an asset. The intersection provides a sensitive knob controlling the propagation direction and coherence properties of exciton pulses. The fundamental ideas discussed here have general implications for excitons on a dynamic network.Comment: Letter with 4 pages and 4 figures. Supplemental material with 4 pages and 4 figure

    Comment on "Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity"

    Full text link
    In [cond-mat/9906332; Phys. Rev. Lett. 84, 822 (2000)] and [physics/9906038; Phys. Rev. A 60, 4301 (1999)] Leonhardt and Piwnicki have presented an interesting analysis of how to use a flowing dielectric fluid to generate a so-called "optical black hole". Qualitatively similar phenomena using acoustical processes have also been much investigated. Unfortunately there is a subtle misinterpretation in the Leonhardt-Piwnicki analysis regarding these "optical black holes": While it is clear that "optical black holes" can certainly exist as theoretical constructs, and while the experimental prospects for actually building them in the laboratory are excellent, the particular model geometries that Leonhardt and Piwnicki write down as alleged examples of "optical black holes" are in fact not black holes at all.Comment: one page comment, uses ReV_TeX 3; discussion clarified; basic physical results unaltere

    Partial Transmutation of Singularities in Optical Instruments

    Full text link
    Some interesting optical instruments such as the Eaton lens and the Invisible Sphere require singularities of the refractive index for their implementation. We show how to transmute those singularities into harmless topological defects in anisotropic media without the need for anomalous material properties

    Perfect imaging with geodesic waveguides

    Full text link
    Transformation optics is used to prove that a spherical waveguide filled with an isotropic material with radial refractive index n=1/r has radial polarized modes (i.e. the electric field has only radial component) with the same perfect focusing properties as the Maxwell Fish-Eye lens. The approximate version of that device using a thin waveguide with a homogenous core paves the way to experimentally prove perfect imaging in the Maxwell Fish Eye lens

    Quantum levitation by left-handed metamaterials

    Get PDF
    Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here we consider the quantum physics of such devices. We show that the Casimir force of two conducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials this repulsive force of the quantum vacuum may levitate ultra-thin mirrors

    Vacuum as a less hostile environment to entanglement

    Full text link
    We derive sufficient conditions for infinite-dimensional systems whose entanglement is not completely lost in a finite time during its decoherence by a passive interaction with local vacuum environments. The sufficient conditions allow us to clarify a class of bipartite entangled states which preserve their entanglement or, in other words, are tolerant against decoherence in a vacuum. We also discuss such a class for entangled qubits.Comment: Replaced by the published versio
    • …
    corecore