60 research outputs found

    LEED Building Ordinances for Local Governments

    Full text link
    Local government ordinances requiring the implementation of green building standards in public buildings are increasingly common. Most of these ordinances adopt the Leadership in Energy and Environmental Design (LEED) Green Rating System, promulgated by the U.S. Green Building Council (USGBC).This paper surveys local government ordinances and resolutions requiring public green building and discusses the possible variations and options available to a local government seeking to draft public green building regulations

    Exploiting sets of independent moves in VRP

    Get PDF
    Most heuristic methods for VRP and its variants are based on the partial exploration of large neighborhoods, typically by means of single, simple moves applied to the current solution. In this paper we define an extended concept of independent moves and show how even a very standard heuristic method can significantly improve when considering the simultaneous application of carefully chosen sets of moves. We show in particular that, when choosing a set such that the total cost variation is equal to the sum of the variations induced by each single move, the quality of solutions obtained is in general very high. When compared with numerical results obtained by some of the best available heuristics on challenging, large scale, problems, our simple algorithm equipped with the application of optimally chosen independent moves displayed very good quality

    Models with short and long-range interactions: phase diagram and reentrant phase

    Full text link
    We study the phase diagram of two different Hamiltonians with competiting local, nearest-neighbour, and mean-field couplings. The first example corresponds to the HMF Hamiltonian with an additional short-range interaction. The second example is a reduced Hamiltonian for dipolar layered spin structures, with a new feature with respect to the first example, the presence of anisotropies. The two examples are solved in both the canonical and the microcanonical ensemble using a combination of the min-max method with the transfer operator method. The phase diagrams present typical features of systems with long-range interactions: ensemble inequivalence, negative specific heat and temperature jumps. Moreover, in a given range of parameters, we report the signature of phase reentrance. This can also be interpreted as the presence of azeotropy with the creation of two first order phase transitions with ensemble inequivalence, as one parameter is varied continuously

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    American College of Rheumatology Provisional Criteria for Clinically Relevant Improvement in Children and Adolescents With Childhood-Onset Systemic Lupus Erythematosus

    Get PDF
    10.1002/acr.23834ARTHRITIS CARE & RESEARCH715579-59

    Vehicle classification from low-frequency GPS data with recurrent neural networks

    Get PDF
    The categorization of the type of vehicles on a road network is typically achieved using external sensors, like weight sensors, or from images captured by surveillance cameras. In this paper, we leverage the nowadays widespread adoption of Global Positioning System (GPS) trackers and investigate the use of sequences of GPS points to recognize the type of vehicle producing them (namely, small-duty, medium-duty and heavy-duty vehicles). The few works which already exploited GPS data for vehicle classification rely on hand-crafted features and traditional machine learning algorithms like Support Vector Machines. In this work, we study how performance can be improved by deploying deep learning methods, which are recently achieving state of the art results in the classification of signals from various domains. In particular, we propose an approach based on Long Short-Term Memory (LSTM) recurrent neural networks that are able to learn effective hierarchical and stateful representations for temporal sequences. We provide several insights on what the network learns when trained with GPS data and contextual information, and report experiments on a very large dataset of GPS tracks, where we show how the proposed model significantly improves upon state-of-the-art results

    Classification of Crash and Near-Crash Events from Dashcam Videos and Telematics

    No full text
    The identification of dangerous events from sensor data is a fundamental sub-task in domains such as autonomous vehicles and intelligent transportation systems. In this work, we tackle the problem of classifying crash and near-crash events from dashcam videos and telematics data. We propose a method that uses a combination of state-of-the-art approaches in computer vision and machine learning. We use an object detector based on convolutional neural networks to extract semantic information about the road scene, and generate video and telematics features that are fed to a random forest classifier. Computational experiments on the SHRP2 dataset show that our approach reaches more than 0.87 of accuracy on the binary problem of distinguishing dangerous from safe events, and 0.85 on the 3-class problem of discriminating between crash, near-crash, and safe events
    corecore