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Vehicle classification from low-frequency GPS data with recurrent neural
networks

Matteo Simoncini, Leonardo Taccari∗, Francesco Sambo, Luca Bravi, Samuele Salti, Alessandro Lori

Verizon Connect Research - Via Giovanni Paisiello, 20 - Florence, Italy

Abstract

The categorization of the type of vehicles on a road network is typically achieved using external sensors, like
weight sensors, or from images captured by surveillance cameras. In this paper, we leverage the nowadays
widespread adoption of Global Positioning System (GPS) trackers and investigate the use of sequences of
GPS points to recognize the type of vehicle producing them (namely, small-duty, medium-duty and heavy-
duty vehicles). The few works which already exploited GPS data for vehicle classification rely on hand-
crafted features and traditional machine learning algorithms like Support Vector Machines. In this work, we
study how performance can be improved by deploying deep learning methods, which are recently achieving
state of the art results in the classification of signals from various domains. In particular, we propose an
approach based on Long Short-Term Memory (LSTM) recurrent neural networks that are able to learn
effective hierarchical and stateful representations for temporal sequences. We provide several insights on
what the network learns when trained with GPS data and contextual information, and report experiments
on a very large dataset of GPS tracks, where we show how the proposed model significantly improves upon
state-of-the-art results.

Keywords: vehicle classification, GPS, sequence classification, recurrent neural networks

1. Introduction

Inferring the type of vehicles in a road network, a problem typically referred to as vehicle classification in
the literature, is a fundamental task in several applications, such as surveillance systems, traffic management,
emission control, and urban planning [23]. Depending on the application, several definitions of vehicle
categories can be considered, ranging from very broad ones (e.g., motorcycles, cars, buses), up to fine-
grained categorization (e.g., make and model). A standard reference for the definition of classes of vehicles
is the 13-category vehicle taxonomy proposed by the Federal HighWay Administration (FHWA) of the
United States, which is based on the vehicle weight, length, axles number and axles distances [52]. Although
the rules have been revised over the years by companies and agencies [25], the FHWA 13 vehicle categories
are still used as a standard in many applications.

Traditional approaches for vehicle classification use different types of hardware sensors and classification
methods, depending on the application context and the granularity of the desired classification. When
physical components can be installed along a road, techniques using fixed-location sensors, such as pneumatic
tubes, inductive loop detectors, piezoelectric sensors and Weigh-in-motion (WIM) systems can be adopted [2,
26, 48]. Some of these approaches can even provide the full 13-class classification with high accuracy, in
exchange for a high installation cost. For this reason, some less intrusive and expensive classification devices,
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such as infrared sensors, acoustic sensors and radar sensors, have been introduced at the cost of a lower
accuracy and/or coarser classification. Nevertheless, the accuracy of these devices may be affected by traffic
and environmental conditions, or human error during installation [2, 48].

A different set of techniques involve performing classification from still images or videos, for instance
obtained from surveillance cameras [33, 37]. The number and kinds of vehicle categories varies, depending
also on the resolution of the cameras: for instance, vans, taxis, and passenger cars are considered in [37],
while sedans, pickups, and vans in [33]. For image recognition tasks, a huge performance improvement in
recent years has been obtained thanks to deep learning approaches based on Convolutional Neural Networks
(CNN), such as those presented in [58], where the authors classify vehicles into passengers and other vehicles
from noisy and/or dark images, and [16], where the authors focus on vehicles found in Google Street View
images across the United States. In the latter work, a CNN-based classification algorithm is trained on a
very large and diverse dataset of almost 350 000 vehicle images and tested on 27 865 examples, obtaining an
average class accuracy of 0.67 for the challenging problem of discriminating 11 vehicle types.

For a thorough discussion on advantages and drawbacks of the existing approaches for vehicle classi-
fication involving different hardware and techniques, as well as their expected performance, we refer the
interested reader to [2, 48]. To give an idea of the performance that can be obtained with different sensors,
the authors of [48] claim that state-of-the-art approaches typically allow an accuracy between 0.80 and 0.95
for 3–5 vehicle classes. We must note, though, that most of the results in the literature are obtained from
experiments on small datasets (sometimes as small as a few dozen examples).

Nowadays, the rise of the Internet of Things and connected cars is enabling new ways to sense a vehicle,
e.g. through the Global Positioning System (GPS) signals it transmits. GPS data are typically produced by
either general-purpose mobile devices (e.g., smartphones) or dedicated GPS tracker devices, traditionally
installed on commercial or public transport vehicles (e.g., delivery fleets, taxis, ambulances, buses) [36], but
recently also on personal vehicles1. When generated by mobile devices, GPS signals are usually used for
navigation or geo-localization purposes, hence they exhibit high sampling rates (of the order of one GPS
sample per second). The frequency and quality of the data from sensors in modern smartphones allow
for their use in several emerging applications, such as driving behavior analysis [15, 39, 50]. When GPS
trackers are used, instead, GPS signals are typically used for remote fleet management, vehicle tracking or
anti-theft systems and lower frequency sampling (of the order of one sample per minute) is often sufficient.
The use of low-frequency GPS data allows for the reduction of operational costs due to bandwidth, storage
space, and computational power and is therefore very common in industrial applications and commercial
fleet management solutions, as well as for insurance companies [36]. Clearly, the technical and economical
advantages come at the cost of accuracy: lower frequency sampling means that information on instantaneous
speeds are scarce and that it is harder to infer the true path of a vehicle between two reported positions.

In the context of fleet management software, a strong motivation for tackling the problem of vehicle
classification lies in extracting information on the connected vehicles that could not be obtained directly
from the GPS devices, and that can be used to improve the user experience of the fleet managers. However,
GPS data are still relatively unexplored as clues to tackle this problem. One of the few works that explore
vehicle classification from GPS data is [48], that considers a two-class classification problem, distinguishing
between passenger cars and delivery trucks, on a small dataset comprising 52 GPS tracks of passenger
cars and 84 GPS tracks of trucks. GPS data used in the paper have a sample rate of 3 seconds, which
is relatively high. The proposed approach entails the use of a Support Vector Machine (SVM) classifier,
and the authors conclude that acceleration- and deceleration-based features have a greater predictive power
than speed-based features. Closely related to vehicle classification is the problem of transportation mode
detection [4, 19, 53, 57], though it is worth remarking that distinguishing between travel modes such as
walk, bus, train and car is in general easier than the finer-grain detection of vehicle classes, as the former
can be solved by using highly discriminative features (such as speed, number of heading changes, number of
stops, or distance traveled) that may not be equally effective for vehicle classifications. Very few works in
this area, an exception being [4], consider low-frequency data.

1See for instance the recent Verizon Hum https://www.hum.com
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In [45], we addressed for the first time the problem of vehicle classification from low-frequency GPS data,
provided by devices installed in commercial fleets for vehicle-tracking purposes. A binary SVM classifier
was shown to achieve state-of-the-art performance in distinguishing between light-duty vehicles (i.e., cars,
SUVs, vans and light duty pickups, that correspond to classes 2–3 of the FHWA categorization) and larger
size vehicles (i.e., heavy duty pickups, small trucks, trucks and big trucks, classes 5–12 of the FHWA
categorization). Our method started from a set of low-level features for each point of a GPS track, and then
aggregated them at the track level, relying on a wide range of aggregation functions such as mean, median,
standard deviation and the like, to obtain over 130 high-level features. The most predictive combination of
features was then identified based on a recursive feature elimination procedure [24].

In recent years, machine learning approaches based on deep neural networks, commonly known as deep
learning [20], have gained a renewed attention thanks to their success in tasks that involve complex input
data like images [28] or sequential or temporal data, such as speech recognition [12] and automated machine
translation [9, 51], becoming the de facto standard technique. What typically makes deep learning effective
is the presence of several stacked layers of non-linear processing units, which allow the deep network to learn
rich hierarchical representations of the initial raw data in an automated way. Typically, the first layers of
a neural network learn to extract some basic and low-level features; proceeding deeper in the network, the
layers learn increasingly complex representations, based on the output of the previous layers; finally, the
last layers map the encoded state to the desired output, be it a class label, or more complex objects such as
images, audio or text [20]. Recurrent Neural Networks (RNNs) [3, 21, 43] are especially suited for tasks that
involve temporal sequences of variable length, such as machine translation, handwriting recognition [22] or
text classification [21]. Alternative approaches are based on the application of convolutional networks [56]:
although originally developed for image-related data, convolution can be applied across time to sequential
data, in order to exploit local correlation of features along the temporal dimension.

Very few works in the literature apply deep learning to GPS data. In [13], the aim is to characterize
driving style, thus associating the correct driver to each GPS sequence. The proposed approach involves
the use of stacked IRNN layers [35] working on sequences of matrices of statistical features obtained from
the GPS sequences. High-frequency GPS data, with a sampling rate of 1 Hz, is used: the authors claim
that performance would significantly degrade with signals sampled at less than 1 sample every 10 seconds.
They also found that aggregating the input features with statistical functions over temporal windows is
instrumental in obtaining better results. In [46], the authors perform multi-task learning via deep recurrent
neural networks to predict the next position and travel mode in a sequence of GPS data points. They show
that using deep learning allows for a significant improvement over traditional “shallow” models, such as
Gaussian processes and Hidden Markov Models.

In this paper, we assess the effectiveness of the deep learning paradigm for the problem of vehicle
classification from low-frequency GPS data. We consider the same type of raw GPS data used in our
previous work [45], but, instead of hand-engineering a large number of high-level features (as done in [45]),
we let the network learn the most effective high-level representations from raw data. We test several
combinations of feed-forward layers and recurrent layers, with Long Short-Term Memory cells (LSTM) [29]
as building blocks. A thorough experimental assessment is carried out to identify the best configuration and
parameters for the deep network. Even the simplest network is shown to perform better than our previous
state-of-the-art approach [45] for the binary problem of distinguishing between light-duty and heavy-duty
vehicles. The best performing networks set a new state of the art both for the binary problem and for the
finer grained classification of vehicles into three classes, that we introduce in this work. The behavior of
the best network is then studied in detail, to gain some insights on what the network has learned and why.
We use a new dataset, comprising about 1 million GPS tracks (i.e., one order of magnitude larger than the
one we introduced in [45]), for a total of more than 55 million GPS positions, about 56 million traveled
kilometers, and a total duration of 1.3 million hours.

The remainder of the article is structured as follows: Section 2 presents the methodology we followed
and describes the data we used and the deep architectures we tested; experimental results and insights on
the learned models are presented in Section 3, while in Section 4 we draw our conclusions.
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Timestamp Position Speed Odometer

p1 2016-11-01 16:02:10 (42.13222, -72.55265) 0.0 m/s 128171.02 m

p2 2016-11-01 16:03:40 (42.13737, -72.54227) 6.1 m/s 128977.99 m

p3 2016-11-01 16:05:10 (42.12700, -72.54660) 16.3 m/s 130830.12 m

p4 2016-11-01 16:06:40 (42.11551, -72.55024) 17.1 m/s 132789.96 m

p5 2016-11-01 16:06:55 (42.10739, -72.54664) 0.0 m/s 133792.06 m

Figure 1: Example of a GPS track composed by five GPS samples. The sampling frequency varies depending on vehicle speed
and it is affected by hardware delay, thus being not constant during the sequence. Note that the reported speed is instantaneous,
so it may be affected by traffic or street conditions.

2. Methodology

2.1. Pre-processing of GPS data

Given a stream of GPS data collected from several heterogeneous GPS devices, we segment it to
obtain a finite set of examples for each vehicle. Let us define a GPS track as a sequence of points
{pi}ni=1 = {p1, . . . ,pn} collected between two stationary states, i.e. periods of time when the engine is
off: p1 is the first point collected after the engine is turned on, and pn is the last one, obtained just before
the engine is turned off again (see Fig. 1 for an example). Our aim is to classify a GPS track as belonging
to a certain class (vehicle type).

Each GPS point pi collected from a device contains the position (latitude and longitude) and a set of
additional data: the overall odometer distance of the device, an absolute timestamp, and the instantaneous
speed. This set of measures are commonly collected by commercial GPS trackers. Note that we cannot
assume uniform sampling rates within a track or across tracks, as data collected by heterogeneous GPS
devices may have different sampling rates, and even in sequences collected by homogeneous devices the
sampling rate can vary according to the vehicle speed or the occurrence of asynchronous triggers, e.g. harsh
driving events.

We perform a few simple preprocessing transformations on the raw data to obtain the input data for the
network. The reason is twofold: on the one hand, this is done to avoid some potential sources of bias in
our dataset, presented below; on the other hand, reducing the amount of variation in the data can reduce
both generalization error and the size of the model needed to fit the training set [20]. As also noted by [13],
GPS data in a deep learning context requires some preprocessing to reach satisfactory results. However, our
pre-processing is simpler than the sliding window approach they used. We pre-process the GPS points as
follows:

• for each GPS sample, we replace the raw (lat,lon) pair with the crow’s flight distance from the previous
to the current point, computed between two pairs of GPS coordinates (lat1, lon1) and (lat2, lon2) with
the Haversine formula:

2R · arcsin

(√
sin2

(
lat2 − lat1

2

)
+ cos(lat1) · cos(lat2) · sin2

(
lon2 − lon1

2

))
, (1)

where R is the average earth radius (6371 km) and all coordinates are expressed in radians. This is
done to remove a first source of bias, since the trained model might generalize poorly to areas not
contained in the training dataset if we were using the GPS coordinates directly;
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ãi
}
n
i= 1

Figure 2: Example of speed, interval speed, acceleration and interval acceleration sequences.

• the raw odometer value obtained from the GPS messages contains the traveled distance of the vehicle
over its entire life. This value carries information also on the age and the historical usage of the
vehicle, poorly generalizing, e.g., to new or underutilized vehicles, and introducing potential bias, e.g.,
if certain types of vehicles are typically older/over-utilized in our dataset. We avoid this potential
issue keeping only the relevant information, that is, the difference of consecutive odometer readings,
which represents the distance traveled by the vehicle from the previous GPS position to the current
one;

• to simplify the format of data in input to the model, we do not use the timestamp directly but the
time elapsed between two consecutive GPS messages, which is not constant in our data;

• we complement the instantaneous speed collected from the GPS device with the interval speed, com-
puted as the traveled distance from the previous GPS point over time, since it represents the average
speed in the interval and conveys different and less noisy information. Similarly, since the instanta-
neous acceleration is not available in our raw data, we compute it as both finite differences of instant
speed and interval speed. An example of the two types of speed and acceleration is given in Figure 2.
Therefore, starting from the raw data sequences of odometer readings and speeds (denoted as {oi}ni=1

and {vi}ni=1, respectively), we introduce the sequences {ṽi}ni=1, {ai}ni=1 and {ãi}ni=1 as the sequences of
finite differences approximations to derivatives of distance, instantaneous speeds, and average speeds
over time, i.e.,

ṽi =
oi − oi−1
ti − ti−1

, ai =
vi − vi−1
ti − ti−1

, ãi =
ṽi − ṽi−1
ti − ti−1

. (2)

Finally, we add the Road Type as a contextual feature for our GPS data. We use the one-hot encoding into
a vector of length 7 to present the road type of each GPS location, among MOTORWAY, HIGHWAY, TRUNK ROAD,
COUNTRY ROAD, CITY ROAD, RESIDENTIAL ROAD and SPECIAL (here reported in descending order of posted
speed). The road type is obtained from the GPS location via a reverse geocoding service2. We already
showed its effectiveness for vehicle classification in our previous work [45], where road type ranked among
the top features. We do not consider additional contextual data here, such as traffic or weather information,
although, if available, that information may be beneficial. As an example, cruising speed is likely to be
highly correlated with the vehicle type, but also with traffic congestion. Any point-wise property of a GPS
track can be easily added in our framework, as an additional input dimension for the neural network.

2PTV xServer (http://xserver.ptvgroup.com/). Analogous results can be obtained with free services such as Open-
StreetMap (http://www.openstreetmap.org/)
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To summarize, we obtain a set of 14 inputs for the network from each point in a GPS track:

• Distance: odometer distance from the previous point (difference between consecutive odometer read-
ings)

• Haversine Distance: distance from the previous point, computed as in Eq. (1)

• Time: time (in seconds) from the previous point (difference between consecutive timestamps)

• Speed and Interval Speed : instantaneous speed (transmitted by the GPS device), and average speed
in the last interval, computed as in Eq. (2)

• Acceleration and Interval Acceleration: derived accelerations, computed as in Eq. (2)

• Road Type: one-hot vector with 7 entries.

We do not use any global feature, computed as statistical aggregations or spectral transformations of
the point-wise data. In particular, we do not include the total distance which, according to our analysis in
[45], was the most effective feature for vehicle classification, nor any other statistical aggregated features,
like the median speed, or its standard deviation, that also proved very effective. We do not even include
features computed over a sliding-window of the sequence, as commonly done in sequence classification
problems [13, 32]. By keeping the data as point-wise as possible, we want to fully exploit the ability of
LSTM-based recurrent neural networks to learn how to extract, encode, and combine the sequential point-
wise GPS information, deriving higher-level features automatically.

2.2. Sequence classification with Recurrent Neural Networks

Recurrent neural networks (RNN) are a popular neural network architecture that has been proven ef-
fective in many tasks on temporal sequences, such as sequence labeling and machine translation. Generally
speaking, an Artificial Neural Network consists of several layers of processing units, called neurons, where
the output of each neuron in a layer is connected to the input of one or more neurons of another layer.
A single neuron implements a function that maps a vector of numeric inputs x = [x1, . . . , xm] to a single
numeric output, in the following form:

f (x) = σ

(
b+

m∑
i=1

wi · xi

)
, (3)

where w = [w1, . . . wm] is a numeric vector of weights, b is a bias term and σ(·) is a (usually non-linear)
activation function, such as the sigmoid function, the hyperbolic tangent or a Rectified Linear Unit (ReLU,
[38]). Data, as a set of vectors of m real numbers, is fed as input to all neurons in the first layer of the network
and the classifier output is determined by the output of the last layer: depending on the specific learning
task, the activation function of the last layer is typically the sigmoid function for binary classification, the
softmax function for multiclass classification, and the identity function for regression [20, 27]. The first layer
is usually defined as the input layer, the last as the output layer and all the others as hidden layers.

Given a training dataset, i.e. a set of m−dimensional vectors of examples and one label for each example,
the weights of the neurons in the network can be adjusted so that the network is able to assign the correct
label to the examples in the dataset, a procedure known as training. Neural network training algorithms
usually iterate a sequence of steps until convergence: a set of data is fed to the network, which is used to
predict a label for each example in the set; the predicted label is compared to the real label through an error
function; for each network weight a gradient of the error, i.e. the partial derivative of the error relative to
the specific weight, is computed; each weight is updated according to the following equation:

wt+1
i = wt

i − α
∂et

∂wi
, (4)

6



where wt
i is the specific weight at iteration t, et is the error at iteration t and α is a (possibly time-varying)

multiplicative weight known as learning rate. For memory and efficiency reasons, it is often convenient
to partition the training data in random sub-samples, known as minibatches, and iteratively adjust the
network weights according to the gradient in each minibatch, a procedure known as Stochastic Gradient
Descent (SGD). See [5] for more details on optimization methods for machine learning. Several recent
improvements have been developed in making adaptive, time varying learning rates [14, 55]: one of the most
successful is the Adam method [34], which computes individual adaptive learning rates for different weights
from estimates of the first and second moments of the gradients.

In feed-forward networks the neurons and their connections form a directed acyclic graph. Recurrent
neural networks, on the other hand, are a subclass of neural network architectures which contain one or more
recurring element, i.e. links connecting a layer to itself, or more generally connecting downstream layers to
upstream layers. Given an input sequence x = {x1, . . . , xT }, consisting of T subsequent observations of the
feature vector x, the simplest way to define a recurrent hidden layer is to consider a function of the form

ht = σ(W · [xt, ht−1] + b) (5)

where x is the vector of inputs, h is the vector of output, W and b are the matrix of weights and the vector
of biases, respectively, [·, ·] is the vector concatenation operator and σ is the activation function.

This simple RNN architecture has been shown to be rather challenging to train, even with a single
recurrent hidden layer: for example, it is affected by the problem of vanishing and exploding gradients [3, 41],
i.e. the norm of the gradient might grow exponentially or shrink to zero, preventing any form of learning. To
tackle this problem, several solutions have been proposed, such as gradient clipping [41], identity initialization
with Rectified Linear Unit (ReLU) activations (so called IRNN) [35], and more complex cell architectures,
such as long-short term memory (LSTM) cells [17, 29]. Compared to the RNN described by Equation (5),
the main idea behind LSTM cells, as summarized in Equations (6)-(11), is to propagate, in addition to the
output state ht, also an internal cell state ct and a number of gating functions it, f t, ot, whose weights are
trained as well, that allow the network to decide whether and how much to update its internal cell state
based on the current input (Eq. 9), and how much of its internal state to actually transfer on the output
state (Eq. 11),

f t = σ
(
Wf [xt, ht−1] + bf

)
(6)

it = σ
(
Wi[x

t, ht−1] + bi
)

(7)

c̃t = tanh
(
Wc[x

t, ht−1] + bc
)

(8)

ct = f t ct−1 + it c̃t (9)

ot = σ
(
Wo[xt, ht−1] + bo

)
(10)

ht = ot tanh(ct) . (11)

Although several alternatives have been proposed in the last few years, LSTM are still commonly con-
sidered as the state-of-the-art for tasks involving sequential data [20].

2.3. Proposed architectures

In our vehicle classification problem, we want to classify each GPS track according to the type of vehicle
that generates it. Each GPS track corresponds to a sequence of input vectors {xt}Tt=0, xt ∈ R14 that are
fed into our network, computed according to the pre-processing formulas described in Sec. 2.1. Although
we consider several configurations in terms of number of layers in the experimental results, the general
architecture we adopt is a network with a stack of multiple feed-forward and/or recurrent layers, with
three separate groups of layers, loosely inspired by the architectures presented in [40] but applied to LSTM
instead of traditional RNN: an input layer followed by Ni→r (Ni→r ≥ 0) input-to-recurrent fully connected
feed-forward layers; Nr (Nr ≥ 1) recurrent LSTM layers; and Nr→o (Nr→o ≥ 0) recurrent-to-output fully
connected feed-forward layers, leading to a final output layer. In Figure 3 we illustrate two versions of our
architecture, unrolled in time. The input-to-recurrent set of feed-forward layers operate independently on
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each temporal sample of the sequence, applying the same function in what can be thought as a feature
extraction phase [8]. The set of recurrent layers, on the other hand, operate sequence-wise, applying a
function that depends not only on the current input, but also on the state of the layer at the previous
timestep. Recurrent layers are meant to learn patterns through time.

Since the length T of each sequence is not constant, but we are dealing with a sequence-to-one classifi-
cation problem, we then need to encode the output of the top recurrent layers into a fixed-length vector. A
simple and effective option is to use only output of the top LSTM layer after it has seen the whole sequence:
this means that the network should accumulate evidence that points to a certain decision, and only the final
state vector of the top recurrent layer is considered (see Figure 3a, NO POOLING). A slightly different option
is to use a one-dimensional (1D) pooling across time, aggregating the outputs of the top recurrent layers
over the whole time horizon (see Figure 3b). This way, rather than letting the recurrent layers accumulate
evidence over time to produce a single output, we look at the entire history of outputs from the recurrent
layers, applying a pooling function to aggregate it. The pooling function can be the average operator, as
done, e.g., in [56], or the max operator, under the hypothesis that single, highly confident outputs should
matter more than the whole sequence.

Once the sequence has been encoded via the recurrent layers into a single, fixed-length vector, a second
set of recurrent-to-output fully connected feed-forward layers is used to operate on the encoded sequence
and produce the output via a final non-linear activation.

2.4. Training

Several techniques may be used in order to speed up the training of neural networks and reduce over-
fitting. We choose to add batch normalization layers [30] before the non-linear activation function of each
feed-forward or recurrent layer as a regularization technique. In preliminary tests, batch normalization
appeared in our case to be more effective than other equally popular techniques, such as dropout [47].

As far as the optimization algorithm is concerned, we use Adam [34], combined with gradient clipping [41]
to avoid instability. The Adam algorithm turns out to be quite robust to the input parameters such as
learning rate, which is of great help in the parameter tuning phase. The training phase is performed with
stratified minibatches of size 64. As activation functions in the feed-forward layers, we use ReLU everywhere,
except for the layers in the LSTM, which are sigmoid or tanh functions, according to the original architecture.
As we are dealing with unbalanced classes, the loss function is weighted by the inverse of the class size, for
neural networks and also for baselines. Table 1 reports the parameters used in the training phase of the
neural networks.

Table 1: Parameters used in training neural networks

Activation functions ReLU
Optimizer Adam
Learning rate 1e-3
Gradient clipping 10.0
β1 (Adam) 0.9
β2 (Adam) 0.999
Weight initialization feed-forward Glorot uniform [18]
Weight initialization LSTM Glorot uniform [18]
Weight initialization LSTM, recurrent path orthogonal [44]

The models are built and trained with tensorflow [1], via the Keras wrapper [10], on Nvidia K80 GPUs
as provided on the p2.xlarge AWS instances.

3. Experimental results

In our experiments, we consider two variants of the vehicle classification task. First, we focus on a binary
classification problem, where we want to discriminate heavy-duty vehicles from light-duty ones, based on
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x0 x1 xt xT

input-to-recurrent feed-forward

recurrent layers

recurrent-to-output feed-forward

y

(a) An example of NO POOLING architecture.

x0 x1 xt xT

input-to-recurrent feed-forward

recurrent layers

1D Pooling

recurrent-to-output feed-forward

y

(b) An example of the architecture with pooling across time.

Figure 3: Examples of the two recurrent architectures we tested. In both architectures, for each GPS point t, the input layer
(green) is fed a vector xt. Some input-to-recurrent fully connected feed-forward layers (blue) process the input before the
recurrent layers. Each LSTM layer (red) receives as input at time t the output of the underneath layer and its internal states
ht−1 and ct−1 from the previous timestep. In the first architecture, at the last timestep T the output of the top LSTM layer
goes through a number of additional recurrent-to-output feed-forward layers (brown), before being classified by the final output
layer (orange). In the second architecture, at the last timestep T all the outputs across time of the top LSTM layer go through
a pooling function, such as the average function, and the pooled output is processed by the recurrent-to-output feed-forward
layers and classified in the output layer.
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the GPS tracks they generated. This is the problem already considered in [45, 48]. Then, we extend the
approach to a three-class version of the same task, with a finer classification granularity. In this case, the
classifier should distinguish between light-duty, mid-duty and heavy-duty vehicles, as defined below.

3.1. Datasets

To our knowledge, no public low frequency GPS datasets labeled by vehicle type exist. The dataset we
use is made out of GPS tracks from about 100K vehicles (96 338) tracked by Fleetmatics, a fleet intelligence
company now part of Verizon Connect3, in the US in January 2016. For each vehicle, we select 10 GPS
tracks (as defined at the beginning of Section 2.1) with length no shorter than 20 timesteps, corresponding
to roughly 30 minutes, assuming the average sampling rate is 90 seconds. Thus, considering the task of
vehicle classification from single GPS sequences, we have almost 1 million examples in our dataset: this is
one order of magnitude greater than what we used in [45] and among the largest datasets ever used for this
task.

Note that the number of sufficiently long sequences generated by each vehicle during the considered
month may be larger than 10. However, we choose to include in our dataset the same number of sequences
for all the vehicles, in order to avoid bias in the learning stage towards those that would appear a larger
number of times in the dataset. At the same time, we have discarded vehicles that did not have at least 10
long enough sequences.

As far as data cleansing is concerned, due to the presence of some outliers in sequence length (often due
to device or network issues, e.g., missing “engine off” events), we decide to limit the length of the sequences
to a maximum value, discarding the remaining GPS points. This preprocessing may also help training the
network, as gradients in RNNs become harder to propagate the longer the input sequence is. We opt for
keeping up to 200 GPS points for each sequence, corresponding to roughly 5 hours of driving time, which
should be enough to let driving patterns that can be reliably classified emerge and removes almost all outliers
due to hardware issues.

For the binary problem, we define the two classes according to the same definitions used in [45]: we
obtain 77 545 light-duty vehicles (containing cars, SUVs, vans and small/medium-size pickups, roughly
corresponding to class 2 and 3 of the FHWA scheme) and 18 793 heavy-duty vehicles (small, medium and
large-size trucks, classes 5 and above of the FHWA scheme). The problem is unbalanced, with the light-duty
vehicles outweighing the heavy-duty ones about 4 to 1.

For the three classes problem, the vehicles were assigned as follow: 5 593 light-duty vehicles (cars and
SUVs, corresponding to class 2 of the FHWA scheme), 78 102 mid-duty vehicles (vans, pickups and small
trucks, corresponding to class 3 and 5 of the FHWA scheme) and 12 643 heavy-duty vehicles (medium and
large-size trucks, corresponding to class 6-13 of the FHWA scheme). The problem is, again, unbalanced, with
the mid-duty vehicles representing about 80% of the examples, and the light-duty class being particularly
under-represented.

We split the dataset into training, validation, and test sets of 674 360, 144 500, and 144 520 examples,
respectively (roughly a 70–15–15 split). The split is performed in a stratified way, according to the vehicle
that generated each sequence: the proportion of GPS tracks belonging to each considered class is the same in
the 3 sets, and all the tracks of the same vehicle belong to the same set (to avoid the bias arising from seeing
the same vehicle both at training and test time). To train and tune the neural networks while avoiding
over-fitting of the training set, we used the training set to learn the parameters, and tested the learned
model on the validation set to select the best epoch. To tune the other classifiers, we train them with 5-fold
cross validation, stratified by vehicle, on the combined training and validation set. Finally, we compare all
the classifiers by running them on the test set.

3.2. Performance metrics

When monitoring the performance of the network on the validation set during training, and to evaluate
the final performance on the test set, we consider metrics which give meaningful results also with unbalanced

3https://www.verizonconnect.com
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class cardinalities. Moreover, we are interested in having good performance on classes regardless of their
size, which can be obtained using macro-average metrics. For these reasons, we use as main performance
indicator balanced accuracy (equivalent to macro-average recall) [7, 54], defined as

accbal :=
1

C

C∑
c=1

TPc

Nc
, (12)

where C is the number of classes, TPc is the number of correctly classified samples (true positives) for class
c, and Nc is the total number of samples belonging to class c. Beside the desired robustness, this metric has
also the advantage of being seamlessly suited to evaluate binary and multi-class models.

In a practical setting, one may also use a cost-sensitive accuracy, where each type of error and correct
classification is weighted according to the application goal. For binary models, this is equivalent to changing
the decision threshold. Therefore, we also report the ROC Area Under the Curve (AUC), which compares
models across all the range of possible decision thresholds, and can give complementary insights into the
models performance. While in the binary case the AUC can be computed directly and is invariant to the
choice of the positive class, for multi-class models we report the macro-averaged AUC.

3.3. Binary classification

We first report results on the binary classification task of distinguishing between sequences produced by
light-duty and heavy-duty vehicles, as described in more detail in Section 3.1.

As a baseline, we use the approach we recently proposed in [45], based on an SVM classifier that uses
an optimal set of features found by recursive feature elimination. The selection is performed over a pool of
features computed with sequence-level statistical aggregation functions, such as mean, standard deviation,
etc. We adopt an RBF kernel, as in [45]. Since training the SVM classifier on the full dataset proves rather
time consuming, we perform a grid search with 5-fold cross-validation over a subset of the data with 3 080
light-duty vehicles and 758 heavy-duty ones to select the SVM parameters. The optimal parameters are
C = 10.0 and γ = 0.08.

We also use as baseline a random forest classifier [6] as implemented in the scikit-learn library [42]. As
it is faster to train than the SVM, to select its parameters we perform 5-fold cross validation over the full
dataset: we run a grid search over the number of trees and their maximum depth. The optimal parameters
turn out to be 200 trees and 20 levels of depth.

Single sequence classification. Results for the classification of a single sequence are reported in the column
Single seq. of Table 2 for the baselines and a selection of the network configurations we tested. All the
RNN models have been trained for 50 epochs, and we selected the model obtained at the epoch with the
best balanced accuracy value on the validation set. Typically, this occurs between the 20th and the 40th
epoch for all the models. Training longer only leads to over-fitting.

To define the best architecture and parameters for the network, we started by assessing the performance
of a “shallow”, single layer of LSTM neurons. We preliminary experimented with some numbers of neurons
for the layer, and we found that 100 neurons perform slightly better than fewer of them, and have similar
performance to more neurons while being faster to train. Therefore, we settled on 100 neurons for these
layers and the subsequent ones we add. A single layer of LSTM cells already performs better than the
Random Forest baseline, and on par with the SVM one.

In Table 2, we first report experiments where we incrementally add new layers with a NO POOLING archi-
tecture, to assess the improvement obtained with deeper architectures, as suggested in [40]. Interestingly,
the presence of at least a fully-connected feed-forward layer between the input and the recurrent layers is
crucial to obtain a significant improvement in both considered metrics (e.g., the balanced accuracy jumps
from 0.751 to over 0.786). An input-to-recurrent layers allows the network to learn new representations
of the input data which are more effective when stored in the recurrent layers. Adding a feed-forward
recurrent-to-output layer, between the LSTM layer and the output of the network, allows the model to learn
also some useful post-processing of the network hidden state, and slightly increase the model performance.
Overall, the configuration with an input-to-recurrent layer and a recurrent-to-output layer surrounding the
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Table 2: Results for the binary classification task when classifying every sequence independently (Single seq. columns) and
all the sequences of the same vehicle together (Multiple seq. columns). In bold, the best result for each metric. Rows marked
as NO POOLING report results obtained with the architecture described in Figure 3a, while rows marked as MAXPOOL, AVGPOOL
report results obtained with the architecture with the pooling gate described in Figure 3b, where the aggregation function is
a max or average operator, respectively. In the layers columns for the RNNs, with the notation Li ×Ni we indicate that the
layer has Li stacked feed-forward or LSTM layers with Ni neurons.

Model
Input → Recurrent

FF layers
Stacked

LSTM layers
Recurrent → Output

FF layers
Single seq. Multiple seq.

accbal AUC accbal AUC

RANDOM FOREST 0.726 0.806 0.801 0.883
SVM [45] 0.750 0.828 0.823 0.903

NO POOLING – 1×100 – 0.751 0.831 0.828 0.905
NO POOLING – 1×100 1×100 0.756 0.839 0.835 0.915
NO POOLING 1×100 1×100 – 0.786 0.871 0.858 0.933
NO POOLING 1×100 1×100 1×100 0.793 0.876 0.863 0.938

NO POOLING 3×100 1×100 1×100 0.794 0.878 0.867 0.939
MAXPOOL 3×100 1×100 1×100 0.792 0.877 0.865 0.938
AVGPOOL 3×100 1×100 1×100 0.793 0.877 0.867 0.939

NO POOLING 5×100 1×100 1×100 0.793 0.877 0.863 0.937

NO POOLING 1×100 2×50 1×100 0.790 0.875 0.862 0.936
MAXPOOL 1×100 2×50 1×100 0.793 0.878 0.865 0.938
AVGPOOL 1×100 2×50 1×100 0.792 0.877 0.862 0.937

LSTM layer obtains a significant improvement in terms of balanced accuracy (0.793) and AUC (0.876) with
respect to the one with a single recurrent layer only. This is consistent with the findings in [40], that showed
how the performance of RNNs can be improved inserting deep feed-forward layers between the recurrent
layers and the input/output.

Let us now also consider networks with the pooling gate, as described in Figure 3b. As pooling functions,
we used the average and the max operators, which are commonly used in deep neural networks [20].

Following on the idea that deeper networks have better performance, we tried to further increase the
number of input-to-recurrent layers, whose addition brought the greatest improvement. Indeed, using 3
input-to-recurrent layers gives us a small but consistent improvement across metrics: we obtain models with
the best overall performance, reaching almost 80% of balanced accuracy, and almost 0.88 of AUC score,
with the NO POOLING architecture. Results with the pooling architectures are very similar. By inspecting
the ROC curves in Figure 4a, we can see that the best deep model outperforms the baseline not only at the
aggregated AUC level, but for all levels of specificity.

Adding more layers does not appear to help, as shown by the experiment with 5 input-to-recurrent layers.
Note that networks with several feed-forward layers are significantly slower to train due to the increasing
number of parameters, so we did not experiment with adding more layers.

An alternative way to increase the power of a recurrent neural network is to use more than one recurrent
layer [40]. We tested an architecture with two stacked recurrent layers, where we reduced the number of
LSTM cells to 50, to limit the training time and the number of parameters. With two stacked layers, we
obtain the best results with the max pooling network, whose performance is very close to the best overall
results.

Multiple sequences. Depending on the application, it may be feasible to delay the decision on the vehicle
category until more than one GPS sequence have been collected. Indeed, the behavior of a vehicle in a
(relatively) short period of time does not only depend on its category, but also on several additional factors,
such as the driver behavior, and external conditions (weather, traffic, etc.). Moreover, especially in mid-duty
vehicles, the dynamics are highly affected by the load of the vehicles: a pickup motion will appear more like
a high-duty vehicle when it is fully loaded, while, when unloaded, it may be hard to distinguish from a sedan
– and especially so, given that we are dealing with low-frequency data. Making an informed decision from
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(a) Single sequence.
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(b) Sequences aggregated by vehicle.

Figure 4: ROC curves over the test set for the best recurrent neural network and the baselines.

multiple GPS sequences obtained from the same device would allow to average out outliers or non-typical
behaviors.

Therefore, we tested a simple algorithm which makes use of all the 10 GPS tracks that are available
for each vehicle in our dataset. Firstly, we classify every track with a single-sequence classification model,
trained as described in the previous section. Then, we aggregate the results by averaging the continuous
output of the model for the 10 predictions and we threshold the average to obtain the final classification.
As shown in the columns Multiple seq. of Table 2, this simple aggregation yields a significant boost in
classification performance for all the models.

The best model remains the same even when aggregating sequences, and it keeps outperforming the
baselines at the aggregated AUC level and at all values of specificity (Figure 4b).
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Figure 5: Balanced accuracy on the vehicles of the test set as a function of the number of single-sequence results that are
aggregated for each vehicle (mean ± standard deviation).

To further study the effect of the aggregation of several single-sequence outputs, we tested the perfor-
mance of the method when we artificially limit the number of sequences to be aggregated. We randomly
sample without replacement a subset of cardinality k = 1, . . . , 10 from the 10 available tracks in the test set
for each vehicle, use our best RNN model to obtain k single-sequence classification outputs, and aggregate
them. This process is repeated 10 times and the final accuracy averaged. As easily seen in Figure 5, the
balanced accuracy for our best model grows with the number of aggregated sequences, but the gain quickly
plateaus after 7/8 tracks, which suggests that 10 sequences can be an effective value in practice.
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(a) Heavy-duty vehicle
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(b) Light-duty vehicle

Figure 6: Input data (road type, speed and acceleration) and LSTM activations over time for the best binary network. More
specifically, the top subplot reports the road type where darker means faster (highways are darkest blue, while missing data
is in white). The second subplot displays the instant speed in km/h, while the third shows the acceleration computed as the
difference between consecutive instant speeds. The two heat maps show on the i-th row the activation of the i-th LSTM cell of
the recurrent layer: the first heat map shows the internal cell state cti (normalized between -1 (blue) and +1 (red) applying a
tanh function), the second one the output state ht

i. Finally, the bottom plot reports the unthresholded output of the network
for each time t, i.e., the probability assigned by the network to the input track having been generated by a heavy-duty vehicle
up to that moment (heavy-duty = 1, light-duty = 0). The correct label is displayed as a red line.

3.4. Interpretation of the learned binary model

In Figure 6, we report the evolution of the internal state of the recurrent layer for two sequences belonging
to the two classes, to provide some intuitions about what kind of reasoning the network has learned to carry
out. In both sequences, the network starts with high confidence in the vehicle being a heavy-duty one: as
there is some idling at the beginning of the sequence, the network starts to favor the heavy-duty class, as
heavy-duty vehicles tend to have long idling periods at the beginning of the sequences, likely because it
takes longer to load them. In both sequences, when the vehicle starts to move the confidence of the network
decreases, and it is more or less half-way after the first part of the sequence, where both vehicles travel on
motorways with similar speed, above 100 km/h. In the case of the first sequence, the network gains more and
more confidence in the vehicle being a heavy-duty one, the more stop-and-restarts the vehicle accumulates:
probably, big trucks tend to serve stops without turning their engine off, and the network has learned to
exploit this clue. We can see that there are a lot of transitions in the LSTM cell states every time the vehicles
starts a new part of its journey, and the output confidence increases accordingly. Instead, for the light-duty
vehicle, the network moves strongly in favor of the light-duty class around sample 45. Probably, the sharp
deceleration at sample 44, combined with what the network has observed so far, provides enough evidence
for the decision. Indeed, in our dataset it is more likely for light-duty vehicles to reach such decelerations,
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which are high for our sampling frequency. However, it is hard to interpret which events are key for the
network decisions. It is also evident from these charts how difficult it is to infer the correct label from the
sparse information we collect.
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(a) LSTM neuron correlated with distance events
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(b) LSTM neuron correlated with speed events

Figure 7: Example of LSTM neurons whose internal state is highly correlated with interpretable functions of the inputs. We
report the same sequences in both sub-figures. On the left, the internal state of a neuron which approximately counts how
many samples have Distance greater than a threshold, and the count of samples with Distance > 100 meters for reference. On
the right, the internal state of a neuron which approximately memorizes the difference between the number of samples with
high speed (> 40 km/h) minus the idling samples (Speed < 5 km/h).

It is also instructive to see examples of what the network has learned to memorize in its recurrent neurons.
To identify easily interpretable neurons, we looked for LSTM cells that were highly correlated with simple
functions of the input.

First, we show a neuron whose internal state sequence {ct}Tt=1 has maximum average correlation, over
all the GPS tracks (ρ = 0.98), with the function that counts the number of non-zero distance intervals
occurred so far (defined as GPS samples where Distance is greater than 100 m). We report the evolution of
this function and the cell state for five randomly selected input sequences in Fig. 7a, that clearly shows the
similarities of the two signals. From our previous work [45], we knew that the total cumulative distance is
an important feature. It is interesting to see that the network has learned to extract a similar information,
but has done this totally automatically from the training data.

Another interpretable neuron we found is a cell which is tuned to approximately memorize the difference
between the number of high speed events (i.e., Speed is greater than 40 km/h) and idling events (i.e., Speed
is lower than 3 km/h) seen so far. The average correlation between this signal and the cell state across
our dataset turns out to be over 0.9. We report in Fig. 7b the evolution of this function and the cell state
for the same five input sequences considered in Fig. 7a. As we observed when commenting Fig. 6, a lot of
idling samples are a strong indication that the vehicle is a heavy-duty one, therefore it seems reasonable in
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Table 3: Results for the multiclass task when classifying every sequence independently (Single seq. columns) and all the
sequences of the same vehicle together (Multiple seq. columns). In bold, the best result for each metric. Rows marked as
NO POOLING reports results obtained with the architecture described in Figure 3a, while rows marked as MAXPOOL and AVGPOOL

reports results obtained with the architecture with the pooling gate described in Figure 3b, where the aggregation function is
an average or a max pooling, respectively. In the layers columns for the RNNs, with the notation Li ×Ni we indicate that the
layer has Li stacked feed-forward or recurrent layers with Ni neurons.

Model
Input→Recurrent

FF layers
Stacked

LSTM layers
Recurrent→Output

FF layers
Single seq. Multiple seq.

accbal AUC accbal AUC

SVM OVA 0.586 0.759 0.657 0.821
RANDOM FOREST 0.580 0.781 0.664 0.848

NO POOLING 3×100 1×100 1×100 0.655 0.820 0.745 0.886
AVGPOOL 3×100 1×100 1×100 0.654 0.820 0.758 0.887
MAXPOOL 1×100 2×50 1×100 0.661 0.821 0.753 0.888

hindsight to store this information. Overall, this is another interesting example of the ability of the network
to figure out on its own what processing of the input features can be effective for the classification task at
hand.

3.5. Three-class classification

In this section, we report results on the more challenging task of classifying sequences into three classes:
light-duty, mid-duty, and heavy-duty vehicles. Although this problem has not been studied before in the
literature, we can easily extend both baselines we used for the binary case. The SVM approach we proposed
in [45] can be used for multi-class classification with a standard One-Versus-All (OVA) algorithm. The
optimal parameters are again selected with a grid search on the same subset of the full dataset, as done
for the binary problem, obtaining C = 10 and γ = 0.0022. It is even easier to extend the random forest
baseline to the multi-class scenario, because it seamlessly supports it and it is actually widely regarded as
very competitive out-of-the-box choice for multi-class classification problems [27]. As done for the binary
problem, we perform a grid search with 5-fold cross-validation over the full training set to select the optimal
number of trees and their maximum depth. The optimal parameters in this case turn out to be 300 trees
and 10 levels of depth.

The RNN architectures tested in the multi class problem are the same we used for the binary case, the
only difference being the final layer, where we replace the sigmoid activation function with the standard
3-way softmax. We use the same number of epochs and the same model selection strategy used for the
binary case.

Results are reported in Table 3 for a selection of network architectures and parameters which had the
best performance. All the tested configurations significantly outperform the baseline methods in terms of
balanced accuracy, both when classifying single sequences and when aggregating multiple sequences. For
the three-class problem the architecture with the max pooling gate performs slightly better than the NO

POOLING one. This suggests that, for harder problems, looking at the highest activation in the entire history
of the recurrent layer helps highlighting segments where it is easier to infer the vehicle class.

Let us also use the multi-class problem to provide some results in terms of computational time. The
SVM One-Versus-All requires more than 10 days of training time on a single CPU (an Intel Xeon E5-2660
v3 @2.60GHz), while the Random Forest only requires 20 minutes on the same machine. For the neural
networks, each training epoch takes between 1 and 2 hours, which translates to several days of training
time (between 2 and 5) without early stopping, on Nvidia K80 GPUs as provided on the p2.xlarge AWS
instances. Concerning the efficiency when predicting the class of each sequence, the SVM is again quite
slower, requiring 13 hours to classify the 144k GPS sequences in the test set. The RF classifier takes
less than 10 seconds, while the Neural Network roughly takes 5 minutes, i.e. around 2 ms per sequence.
Therefore, although the training phase is computationally intensive, the approach based on recurrent neural
networks is also extremely attractive in terms of practical applicability in real-time.
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3.6. Interpretation of the learned 3-class model

Table 4: Confusion matrix for the best model on the multi-class problem when aggregating all the sequences of a vehicle.

predicted

light mid heavy
re

al
light 85% (709) 13% (112) 2% (19)

mid 41%(4848) 48%(5648) 11%(1220)

heavy 1% (22) 6% (104) 93%(1770)

By analyzing the confusion matrix reported in Table 4, we can see that, by using the class weights
in the loss function, we are able to obtain a classifier which has good performance also on the minority
classes (i.e., light-duty and heavy-duty vehicles). In particular, the classifier is effective at distinguishing
between the heavy-duty vehicles and the other classes. However, the mid-duty vehicles are especially hard
to separate from the light-duty ones: roughly 40% are incorrectly classified as light-duty. We believe this
may be mainly due to the large intraclass variance in how vehicles from the middle class are used. Indeed,
mid-duty vehicles such as pickups and small vans can be used for very different purposes, ranging from the
handling of heavy loads to passenger cars for field service operators, and this greatly affects the kind of
behavior that is captured in the GPS data. To address this ambiguity, finer-grained GPS data could be
beneficial, as well as additional complementary sources of information, e.g. axle load sensors or RPMs data.

The ambiguity is confirmed by the Principal Component Analysis reported in Figure 8a. This analysis
shows that the hierarchy of feature extractors learned by the network is able to embed a sequence in a feature
space where light-duty vehicles (leftmost cluster) and heavy-duty vehicles (rightmost cluster) form two well
separated clusters along the main principal direction. Interestingly, mid-duty vehicles are clearly divided
into three clusters in the space of the first two principals directions: two clusters correspond to light-duty
and heavy-duty vehicles, while the third cluster spreads along the second principal component, again well
separated from the others. If we select the most frequent mid-duty vehicle from each cluster, as reported
in Fig. 8b, we can see that they correspond to the semantics of the clusters we identified: in the cluster
overlapping with light-duty vehicles (left), the most frequent mid-duty vehicle is the Chevrolet City Express,
a small van; in the cluster overlapping with heavy-duty vehicles (right), the most frequent mid-duty vehicle
is the Freightliner FL70, a small truck; in the third cluster (top), the most common mid-duty vehicle is the
FORD F450 chassis, an average pickup. The network has automatically learned to segment the mid-duty
vehicles into sub-classes and to infer the similarities with the other classes: this is a remarkable result and
shows that deep learning holds the potential to discriminate between finer-grained classes as well.

4. Conclusions

In this work we have investigated the effectiveness of modern neural network architectures used with
low-frequency GPS data for the purpose of vehicle classification. When applied to the problem of recognizing
whether the vehicle generating the GPS track is a light-duty or a heavy-duty vehicle, deep recurrent archi-
tectures are shown to outperform the existing state-of-the-art based on hand-crafted features and shallow
classification algorithms like SVMs. The proposed architectures seamlessly generalize to multi-class classifi-
cation, and we have used them to set a reference performance for the yet unexplored problem of classifying
vehicles into three categories from low-frequency GPS data. All our tests have been carried out on one
among the largest datasets of GPS sequences used to date.

In particular, we have investigated recurrent neural networks with Long-Short Term Memory neurons,
and have experimentally shown that feed-forward input-to-recurrent and recurrent-to-output layers can
greatly enhance their performance. A variant of this architecture, where the recurrent-to-output layers
operate on max- or average-pooled outputs of the LSTM layer across time, is shown to have similar per-
formance to the architecture without pooling gates in the binary case, and slightly superior results in the
multi-class case.
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(a) All classes.

City Express FL70

F450

(b) Only mid-duty vehicles.

Figure 8: Principal Component Analysis embedding along the first two directions of the output state of the last layer before
the output layer of the best model for the multi-class case. To reduce the number of points and study how the network has
learned to map the different classes, we encode, for each vehicle, the sequence classified with highest confidence by the network.
All sequences are sampled from the test set. In fig. (b), we report also the most frequent mid-duty vehicles in the three clusters
defined by the dotted lines.

The results that can be obtained with data from other types of hardware sensors, as we mentioned in the
introduction, are typically still superior to what can be achieved with low-frequency GPS data only. However,
the kind of data used in this study is being increasingly collected by individuals, by public institutions, and
by companies operating in the growing market of IoT and fleet intelligence solutions. Therefore, we expect
the interest in leveraging these data assets to grow in the coming years and we think that other companies
and research labs experimenting on GPS data with deep learning technologies will benefit from the findings
of our study.

As far as our research is concerned, we would like to assess the improvements in classification accuracy
achievable by using several complementary sources of information that could be collected from our trackers,
like GPS altitude, RPMs, and accelerometer data. Moreover, architectures based on alternative recurrent
units (such as the Gated Recurrent Units [11]), attention mechanisms [49], or one-dimensional convolutional
neural networks, could be evaluated, and different techniques to cope with the class imbalance could be
explored, such as undersampling/oversampling methods.

Another potential avenue for research would be to extend and generalize our approach to deal with high-
frequency data obtained from smartphone sensors [50], applying recurrent neural network architectures not
only to vehicle classification, but also to other related problems, such as transportation mode detection [53]
or driving behavior identification [31, 39]. For the mentioned problems, our proposed architecture could be
adapted by removing the pooling gates, so as to obtain a sequence-to-sequence classification model, rather
than a classifier with a single output.
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[9] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation. http://arxiv.org/abs/1406.1078.

[10] Chollet, F., 2015. Keras. https://github.com/fchollet/keras.
[11] Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence

modeling. arXiv preprint arXiv:1412.3555.
[12] Deng, L., Hinton, G., Kingsbury, B., 2013. New types of deep neural network learning for speech recognition and related

applications: An overview. In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference
on. IEEE, pp. 8599–8603.

[13] Dong, W., Li, J., Yao, R., Li, C., Yuan, T., Wang, L., 2016. Characterizing driving styles with deep learning. arXiv
preprint arXiv:1607.03611.
URL http://arxiv.org/abs/1607.03611

[14] Duchi, J., Hazan, E., Singer, Y., jul 2011. Adaptive subgradient methods for online learning and stochastic optimization.
J. Mach. Learn. Res. 12, 2121–2159.
URL http://dl.acm.org/citation.cfm?id=1953048.2021068

[15] Eren, H., Makinist, S., Akin, E., Yilmaz, A., 2012. Estimating driving behavior by a smartphone. In: Intelligent Vehicles
Symposium (IV), 2012 IEEE. IEEE, pp. 234–239.

[16] Gebru, T., Krause, J., Wang, Y., Chen, D., Deng, J., Fei-Fei, L., 2017. Fine-grained car detection for visual census
estimation. In: AAAI. pp. 4502–4508.

[17] Gers, F. A., Schmidhuber, J., Cummins, F., 2000. Learning to forget: Continual prediction with LSTM. Neural computa-
tion 12 (10), 2451–2471.

[18] Glorot, X., Bengio, Y., May 2010. Understanding the difficulty of training deep feedforward neural networks. In: JMLR
W&CP: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010).
Vol. 9. pp. 249–256.

[19] Gonzalez, P., Weinstein, J., Barbeau, S., Labrador, M., Winters, P., Georggi, N. L., Perez, R., 2008. Automating mode
detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones. In: 15th World
congress on intelligent transportation systems.

[20] Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.
URL http://www.deeplearningbook.org

[21] Graves, A., 2012. Supervised Sequence Labelling with Recurrent Neural Networks. Springer.
[22] Graves, A., Schmidhuber, J., 2009. Offline handwriting recognition with multidimensional recurrent neural networks. In:

Advances in Neural Information Processing Systems. pp. 545–552.
[23] Gupte, S., Masoud, O., Martin, R. F., Papanikolopoulos, N. P., 2002. Detection and classification of vehicles. IEEE

Transactions on intelligent transportation systems 3 (1), 37–47.
[24] Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. Journal of machine learning research

3 (Mar), 1157–1182.
[25] Hallenbeck, M. E., Selezneva, O. I., Quinley, R., 2014. Verification, refinement, and applicability of long-term pavement

performance vehicle classification rules. Tech. rep.
[26] Harlow, C., Peng, S., 2001. Automatic vehicle classification system with range sensors. Transportation Research Part C:

Emerging Technologies 9 (4), 231–247.
[27] Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning. Vol. 1. Springer series in statistics

Springer, Berlin.
[28] He, K., Zhang, X., Ren, S., Sun, J., Dec 2015. Delving deep into rectifiers: Surpassing human-level performance on

imagenet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV). pp. 1026–1034.
[29] Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural computation 9 (8), 1735–1780.
[30] Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift.

In: International Conference on Machine Learning. pp. 448–456.
[31] Johnson, D. A., Trivedi, M. M., 2011. Driving style recognition using a smartphone as a sensor platform. In: Intelligent

Transportation Systems (ITSC), 2011 14th International IEEE Conference on. IEEE, pp. 1609–1615.
[32] Kadous, M. W., 2002. Temporal classification: Extending the classification paradigm to multivariate time series. Ph.D.

thesis, The University of New South Wales.
[33] Kafai, M., Bhanu, B., 2012. Dynamic Bayesian networks for vehicle classification in video. IEEE Transactions on Industrial

Informatics 8 (1), 100–109.
[34] Kingma, D., Ba, J., 2015. Adam: A method for stochastic optimization. In: International Conference on Learning Repre-

19

http://dx.doi.org/10.1023/A:1010933404324
http://arxiv.org/abs/1311.6091
https://github.com/fchollet/keras
http://arxiv.org/abs/1607.03611
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://www.deeplearningbook.org


sentations (ICLR2015). CBLS.
URL http://arxiv.org/abs/1412.6980

[35] Le, Q. V., Jaitly, N., Hinton, G. E., 2015. A simple way to initialize recurrent networks of rectified linear units. arXiv
preprint arXiv:1504.00941.
URL http://arxiv.org/abs/1504.00941

[36] Leduc, G., 2008. Road traffic data: Collection methods and applications. Working Papers on Energy, Transport and
Climate Change (1).

[37] Ma, X., Grimson, W. E. L., 2005. Edge-based rich representation for vehicle classification. In: Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1. Vol. 2. IEEE, pp. 1185–1192.

[38] Nair, V., Hinton, G. E., 2010. Rectified linear units improve restricted Boltzmann machines. In: Frnkranz, J., Joachims,
T. (Eds.), 27th International Conference on Machine Learning (ICML-10). Omnipress, pp. 807–814.

[39] Paefgen, J., Kehr, F., Zhai, Y., Michahelles, F., 2012. Driving behavior analysis with smartphones: insights from a
controlled field study. In: Proceedings of the 11th International Conference on mobile and ubiquitous multimedia. ACM,
p. 36.

[40] Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y., 2013. How to construct deep recurrent neural networks. arXiv preprint
arXiv:1312.6026.

[41] Pascanu, R., Mikolov, T., Bengio, Y., 2013. On the difficulty of training recurrent neural networks. ICML (3) 28, 1310–
1318.

[42] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830.

[43] Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1986. Learning representations by back-propagating errors. Nature
323 (6088), 533–536.

[44] Saxe, A. M., McClelland, J. L., Ganguli, S., 2013. Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks. CoRR abs/1312.6120.
URL http://arxiv.org/abs/1312.6120

[45] Simoncini, M., Sambo, F., Taccari, L., Bravi, L., Salti, S., Lori, A., 2016. Vehicle classification from low frequency GPS
data. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). pp. 1159–1166.

[46] Song, X., Kanasugi, H., Shibasaki, R., 2016. Deeptransport: Prediction and simulation of human mobility and transporta-
tion mode at a citywide level. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI 2016, New York, NY, USA, 9-15 July 2016. pp. 2618–2624.
URL http://www.ijcai.org/Abstract/16/372

[47] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout: a simple way to prevent
neural networks from overfitting. Journal of Machine Learning Research 15 (1), 1929–1958.

[48] Sun, Z., Ban, X., 12 2013. Vehicle classification using GPS data. Transportation Research Part C: Emerging Technologies
37, 102–117.

[49] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,  L., Polosukhin, I., 2017. Attention
is all you need. In: Advances in Neural Information Processing Systems. pp. 6000–6010.

[50] Vlahogianni, E. I., Barmpounakis, E. N., 2017. Driving analytics using smartphones: Algorithms, comparisons and chal-
lenges. Transportation Research Part C: Emerging Technologies 79, 196–206.

[51] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K.,
Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian,
G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., Dean,
J., 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation. CoRR
abs/1609.08144.
URL http://arxiv.org/abs/1609.08144

[52] Wyman, J. H., Braley, G. A., Stevens, R. I., 1985. Field evaluation of FHWA vehicle classification categories. Maine
Department of Transportation, Bureau of Highways, Materials and Research Division.

[53] Xiao, G., Juan, Z., Zhang, C., 2015. Travel mode detection based on GPS track data and Bayesian networks. Computers,
Environment and Urban Systems 54, 14–22.

[54] Yang, Y., 1999. An evaluation of statistical approaches to text categorization. Information retrieval 1 (1-2), 69–90.
[55] Zeiler, M. D., 2012. ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701.

URL http://arxiv.org/abs/1212.5701

[56] Zhang, X., Zhao, J., LeCun, Y., 2015. Character-level convolutional networks for text classification. In: Advances in
Neural Information Processing Systems. pp. 649–657.

[57] Zheng, Y., Liu, L., Wang, L., Xie, X., 2008. Learning transportation mode from raw GPS data for geographic applications
on the web. In: Proceedings of the 17th international conference on World Wide Web. ACM, pp. 247–256.

[58] Zhou, Y., Nejati, H., Do, T.-T., Cheung, N.-M., Cheah, L., 2016. Image-based vehicle analysis using deep neural network:
A systematic study. In: Digital Signal Processing (DSP), 2016 IEEE International Conference on. IEEE, pp. 276–280.

20

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1504.00941
http://arxiv.org/abs/1312.6120
http://www.ijcai.org/Abstract/16/372
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1212.5701

	Copertina_postprint_IRIS_UNIBO
	17TransportationREsearchC
	Introduction
	Methodology
	Pre-processing of GPS data
	Sequence classification with Recurrent Neural Networks
	Proposed architectures
	Training

	Experimental results
	Datasets
	Performance metrics
	Binary classification
	Interpretation of the learned binary model
	Three-class classification
	Interpretation of the learned 3-class model

	Conclusions


