
RESEARCH PAPER

Exploiting sets of independent moves in VRP

Tommaso Bianconcini1 • David Di Lorenzo1 • Alessandro Lori1 •

Fabio Schoen2 • Leonardo Taccari1

Received: 20 October 2016 / Accepted: 31 May 2017

� Springer-Verlag Berlin Heidelberg and EURO - The Association of European Operational Research

Societies 2017

Abstract Most heuristic methods for VRP and its variants are based on the partial

exploration of large neighborhoods, typically by means of single, simple moves

applied to the current solution. In this paper we define an extended concept of

independent moves and show how even a very standard heuristic method can sig-

nificantly improve when considering the simultaneous application of carefully

chosen sets of moves. We show in particular that, when choosing a set such that the

total cost variation is equal to the sum of the variations induced by each single

move, the quality of solutions obtained is in general very high. When compared with

numerical results obtained by some of the best available heuristics on challenging,

large scale, problems, our simple algorithm equipped with the application of opti-

mally chosen independent moves displayed very good quality.

Disclaimer Some of the authors are affiliated with Fleetmatics, a Verizon company, which is a leading

global provider of mobile workforce solutions for service-based businesses. The views set forth in this

article do not necessarily represent the views of Fleetmatics, Verizon or any of their respective affiliates.

& Fabio Schoen

fabio.schoen@unifi.it

Tommaso Bianconcini

tommaso.bianconcini@fleetmatics.com

David Di Lorenzo

david.dilorenzo@fleetmatics.com

Alessandro Lori

alessandro.lori@fleetmatics.com

Leonardo Taccari

leonardo.taccari@fleetmatics.com

1 Fleetmatics Research, Via Paisiello 20, 50144 Firenze, Italy

2 DINFO, Università degli Studi di Firenze, via di S. Marta 3, 50139 Firenze, Italy

123

EURO J Transp Logist

DOI 10.1007/s13676-017-0110-y

http://orcid.org/0000-0003-1160-7572
http://crossmark.crossref.org/dialog/?doi=10.1007/s13676-017-0110-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13676-017-0110-y&domain=pdf

Keywords VRP � Tabu search � Matheuristic � Independent moves

1 Introduction

Most heuristic approaches for capacitated vehicle routing problems (VRPs) are based on

a clever exploration of suitably defined neighborhoods of one (or several, in population-

based methods) current solution. It is well known that the behavior of most successful

heuristics is strongly influenced by the quality of the neighborhood definition and by the

capability to perform a good neighborhood exploration. Much research has been

devoted to efficient ways to explore very large scale neighborhoods, sometimeswith the

aim of trying not to waste precious CPU time by re-evaluating the effect of the same

move more than once: this has been achieved mainly through the use of some kind of

cachingmechanism.Although caching is very relevant inpractice, as it significantly cuts

the total CPU time devoted to neighborhood exploration, in most cases large

neighborhoods are exploredwith the aimof selecting a single ‘‘best’’move to be applied.

Our approach is based on the idea of being able to select, at each step of an

algorithm, a set of moves which can be simultaneously applied to the current solution.

The benefits expected by the approach proposed in this paper are at least two: on one

hand, in this waywe are performing an explorationwhich profits of advantages similar

to those obtained by caching, but without requiring a caching mechanism to be

implemented. On the other hand, and in our opinionmore relevantly, the simultaneous

application of several moves generates a less greedy move acceptance criterion, in

which the singlemost improvingmovemight not be applied, in favor of the application

of several, less profitable moves which, together, perturb the solution in a more

significant way. In fact, it is easy to observe that the usual strategy of selecting a single

most improving move at each iteration of a heuristic method sometimes changes the

current solution in such away that othermoves, with comparable impact on the quality

of the solution, cannot be anymore applied as a consequence of a change in current

routes. The next figure illustrates, through an artificial example, the basic idea.

In this figure the labels over each edge represent the total cost variation in a VRP

solution obtained by removing that edge and suitably modifying a different portion of

the VRP solution in order to obtain a feasible solution. If a standard local search

algorithm is employed, themove to be chosen is to remove edge fb; cg, as this gives the
largest improvement. However, by doing so, in the following stage of the algorithm,

edges fa; bg and fc; dgmight no longer be part of the solution. On the contrary, amove

which removes simultaneously (if feasible) both edge fa; bg and edge fc; dg yields a
total improvement which is significantly higher. In order to be able to design amethod

which takes an idea of this kind into a practical method, a careful definition of sets of

moves which can be simultaneously applied is required, as well as a set of rules for

deducing the overall improvement—in this trivial example we assumed that the

improvements due to each single move were additive.

T. Bianconcini et al.

123

Our idea in this paper is that, through the use of state of the art mathematical

programming solvers, the choice of a whole set of moves which globally improve as

much as possible the current solution is very beneficial in terms of the quality of the

resulting routes. We choose one of the most basic and widely studied models, the

vehicle routing problem with capacity constraints, and implement a very standard

tabu search algorithm. Our objective is to show that even for the most basic VRP

model, studied by a large community with a huge number of existing computational

approaches, and using an elementary heuristic method, enlarging the set of moves to

be applied at each iteration significantly improves the effectiveness of the method.

Indeed, our experimentation on a large test set of medium/large sized instances

shows that the idea of simultaneous moves can bring a standard VRP method to the

quality of much more refined and complex algorithms.

The main contribution in this paper consists in a definition of the concept of

independent moves, which is crucial in order to be able to select sets of moves

which can be applied simultaneously and which guarantee an overall cost variation

which is easily computed. Given the general definition, we formally define a set of

standard moves, very common in VRP heuristics, and show the conditions which

guarantee that these moves are indeed independent. The selection of the best set of

independent moves to be applied to the current solution is then delegated to a Mixed

Integer Programming (MIP) algorithm. Extensive computational experiments

carried out on the 100 instances from the new test set described in Uchoa et al.

(2017) confirm that even a simple implementation of a basic local search heuristic

method can be significantly improved by means of the simultaneous selection of

independent moves, to the point that for most of the instances the resulting method

stops within a few percent points from the putative optimum.

The paper is organized as follows. Some relevant papers are briefly discussed in

Sect. 2. Section 3 introduces the notion of independent moves, which forms the

basis for the definition of the algorithm in Sect. 4. Numerical results are analyzed in

Sect. 5, and conclusions are drawn in Sect. 6. Theoretical properties used in Sect. 3

are proved in ‘‘Appendix’’.

2 Review of the literature

The literature on VRP is very large and it is out of scope to review it here—for a

general reference on the subject the interested reader might consult, e.g., Toth and

Vigo (2014). In this section we would like to mention just those approaches which

are more closely related to the one proposed in this paper, namely, heuristic

approaches that leverage MIP algorithms as well as those in which exponential-size

neighborhoods are efficiently explored by other means.

In recent years several authors have proposed to include MIP models within

heuristic algorithms in order to exploit the computational efficiency of modern MIP

codes and improve the quality of local search methods. These approaches are usually

denoted by the term matheuristic. Recent approaches include, e.g., Bosco et al.

(2014), De Franceschi et al. (2006), Pillac et al. (2013), Schmid et al. (2009), and

Subramanian et al. (2013). Several of them use MIP as a tool to reconstruct solutions

Exploiting sets of independent...

123

after a destroy operation, while others employ techniques like local branching to build

and explore MIP-defined neighborhoods. To the best of our knowledge, the most

widely used approach based on mixing MIP and heuristics for VRP is the selection of

suitable routes by means of the solution of a set-covering or partitioning model. In

practice, in any local search based method, a number of routes is generated which

might be combined a posteriori via a set covering model. This idea, first introduced

in Foster and Ryan (1976) and used, among others, in Kelly andXu (1999) andRochat

and Taillard (1995), is indeed interesting and, while it is not the core of our algorithm,

it has also been used in this paper to get some minor improvement at the end of the

algorithm, as we will further explain later.

Approaches for the exploration of exponential-size neighborhoods for combina-

torial problems that do not employ MIP algorithms have also been widely studied.

In such methods, the large-scale neighborhoods are built in such a way as to allow a

polynomial algorithm to explore them. An example is the dynasearch algorithm

proposed for a machine scheduling problem and the TSP in Congram et al. (2002)

and Potts and van de Velde (1995), which is based on combinations of mutually

independent basic moves, where the optimal sequence of search steps is selected via

dynamic programming.

On the other hand, the literature on methods focused, more specifically, on the

selection of generic subsets of simple, standard VRP moves is quite scarce. A

notable example in this category is Ergun et al. (2006). In this paper a definition of

independence among a small set of moves is considered in order to be able to select a

bunch of improvingmoves simultaneously, in the same spirit of whatwe are proposing

here. The idea of the authors was to restrict so much the set of moves which can be

applied simultaneously, to be able to cast the optimal selection of moves as a

constrained shortest path problem in a directed graph. This way, they can use a label

setting algorithm as a fast heuristic. This selection tool is quite limited in the set of

candidate moves considered, compared to what we propose here. In fact, they define

compounded neighborhoods for the VRP only for two of the six operators we consider

(namely, swap and insertion); their definition of independence is alsomore restrictive,

as it forbids pairs of moves that we consider as independent (such as intertwined

swaps); moreover, they allow for inter–route selection of independent moves by

concatenating different routes into a single one, thus imposing an arbitrary order, and

by setting an arbitrary orientation of the orders within each route.

Our aim in this paper is to greatly enlarge the set of moves, both feasible as well

as infeasible, among which to choose those to be applied. With respect to Ergun

et al. (2006) thus we expand the types of moves considered introducing a broader

definition of independence, we allow the simultaneous choice of moves of different

types, we allow the selection of moves in any route, and overall we greatly expand

the number of moves considered; of course this enlargement in the type and number

of moves to be considered requires the use of a MIP solver, instead of a much

simpler shortest path algorithm.

Another recent example is Riise and Burke (2014) where the idea of choosing a set

of independent moves to be simultaneously applied is studied with the aim of

proposing a highly parallel, GPU–based, implementation. At each iteration a subset of

independent moves is extracted by means of a heuristic procedure and then all these

T. Bianconcini et al.

123

moves are applied simultaneously within an Iterated Local Search algorithm. The

framework is similar to the one proposed here, butwith a very limited set ofmove types

and it is focused on the TSP context, in which capacity constraints are not considered.

3 Independent moves for VRP problems

The problem considered in this paper is the capacitated VRPwith symmetric costs and

a unique depot. Although here we are restricting our attention to one of the most basic

VRP models, many concepts and properties can be extended to more general cases.

Let G ¼ ðV ;EÞ be an undirected, complete, graph where V is the set of nodes,

i.e., a set of orders to be satisfied, plus a depot which we consider to be unique. E is

the complete set of (undirected) edges, with symmetric costs cij � 08 i; j 2 V .

Formally, we identify a (VRP) solution s by the set of its selected edges Es � E. We

assume that a set of R vehicles is given, each with an associated capacity Q. To each

node (order) v 2 V a positive load (demand) dv is associated.

Definition 1 A solution is well-formed if all orders (except the depot) have degree

2, and if each cycle (or tour) in the solution contains the depot node.

In the above definition, each cycle corresponds to a route. A well-formed solution

is feasible if all the routes also satisfy the capacity constraints, i.e., the sum of loads

of the orders in each route is not greater then Q. For the standard capacitated VRP

problem we are facing, we look for a least cost feasible solution with R vehicles,

noting that a vehicle can also be assigned an empty route.

In what follows, let us discard, for the moment, vehicle capacity constraints, to

focus on the effect of themoves on the structure of the solution. Amove m is defined as

a set of edges Rm � E that must be removed from the solution, and a set of edges

Im � E which must be inserted.We also say that the edges in Rm are affected bym. We

denote by m(s) the solution obtained applying the move m to s, formally defined as:

mðsÞ :¼ ðEsnRmÞ [Im ð1Þ

Definition 2 A move m is said to be legal for a well-formed solution s if

1. Rm � Es.

2. Im \ ðEsnRmÞð Þ ¼ ;.
3. m(s) is well-formed.

Definition 3 A set M of legal moves over a solution s is called an independent set if

1. ðRmi
[Imi

Þ \ ðRmj
[Imj

Þ ¼ ; 8mi;mj 2 M (no edge overlap).

2. MðsÞ ¼ Esn
S

m2M Rm

� �� �
[

S
m2M Im

� �
does not contain subtours.

where M(s), with a slight abuse of notation, denotes the solution obtained applying

all the moves m 2 M to s.

It holds that:

Exploiting sets of independent...

123

Proposition 1 If M is a set of independent moves on a well-formed solution s then

1. M(s) is a well-formed solution.

2. costðMðsÞÞ ¼ costðsÞ þ
P

m2M DðmÞ (cost-additivity).

where DðmÞ is the cost difference induced by move m, or

DðmÞ ¼
X

e2Im

ce �
X

e2Rm

ce:

Proof In order to verify that the solution is well-formed, consider first a node

v 2 V different from the depot. Since all moves in M are legal, if a move m cuts an

edge incident to v, it will also insert a new edge touching v, and if it cuts two edges,

it will insert two distinct edges. Due to the no overlap hypothesis, no edge can be

removed or inserted twice by different moves, thus the degree two of the node is

preserved. By hypothesis, the new solution does not contain subtours, hence the

solution is well formed.

Concerning cost-additivity, the cost of a solution is given by the sum of its edge

costs:

costðMðsÞÞÞ ¼
X

e2 Esn
S

m2M
Rm

� �� �
[
S

m2M
Im

� �
ce

¼
X

e2Es

ce �
X

e2
S

m2M
Rm

ce þ
X

e2
S

m2M
Im

ce

ð2Þ

¼
X

e2Es

ce �
X

m2M

X

e2Rm

ce þ
X

m2M

X

e2[Im

ce

¼ costðsÞ þ
X

m2M

DðmÞ
ð3Þ

where (2) follows from the fact that mi and mj are legal moves for s, and (3) follows

from the hypothesis of no edge overlap between the moves in M. h

Proposition 1 tells us that it is possible to combine moves that involve disjoint

sets of edges, as long as they do not create subtours. Also note that, in a practical

setting, according to our definition of independent moves it does not matter in which

order the moves of an independent set are applied.

Although the concept of independent moves is general enough, its relevance in a

specific algorithm depends on the moves the algorithm is allowed to perform. In the

following section we will describe the algorithm we used to prove the usefulness of

applying simultaneous moves, and a set of well known and widely used moves will

be defined. In ‘‘Appendix’’ we will show under which conditions a set of moves is

independent in the sense of Definition 3, so that it can be applied in order to

generate a well-formed solution.

T. Bianconcini et al.

123

4 The proposed algorithm

In this paper we start from a standard method based on neighborhood exploration,

tabu search and destroy-and-repair. The basic algorithm consists in applying a set of

standard moves to the incumbent solution, within a prescribed set of possible move

types; according to the tabu scheme, the best move(s) in the neighborhood are

applied to the current solution, even if this might imply a worsening of the objective

function. These moves and their inverse ones are labeled as tabu, and their

application is forbidden for the next b
ffiffiffi
n

p
c þ 1 iterations, where n ¼ Vj j � 1 is the

number of orders. When, for a certain number of iterations, no improvement is

observed, a set of destroy and repair moves are applied in order to let the algorithm

escape a local minimum, as it is quite standard in many recent VRP approaches (see,

e.g., Bräysy and Gendreau 2005; Dayarian et al. 2016; Koç et al. 2015; Mancini

2016). A high level description of the overall approach is reported in the following

scheme:

The core of the Tabu Search with Independent Sets (TSIS) algorithm is in the

getIndependentSet operator. In standard tabu search methods this is replaced by

the selection of the single most improving (or least worsening) non-tabu move

Exploiting sets of independent...

123

within a specific neighborhood of the current solution. In our approach this is

extended, as we will see, by means of the selection of a set of moves suggested

by the solution of a MIP model. The candidate solution is hence obtained by

applying to the incumbent solution all the moves contained in M. Another

relevant feature of the method is the definition of the destroyAndRepair method,

which introduces some diversification, as typically done in many heuristic

approaches. In the following subsections we will list the elementary moves

included in the neighborhood exploration and the elementary destroy and repair

operators employed in our experiments.

4.1 Neighborhood exploration

Several standard and low–complexity operators are defined in order to build a rich

set of moves among which we aim to chose a subset of promising ones. These

moves are elementary enough to allow for a complete enumeration of all of their

possible application to the current solution.

– Relocate operator an order i is moved from its original route onto a different one

in a specific position;

– Relocate pair operator a pair of adjacent orders i, i þ 1 is moved from its

original route onto a different one. These orders are kept adjacent in the

destination route;

T. Bianconcini et al.

123

– Exchange operator two orders i and j (either from the same or from different

routes) are swapped;

– Exchange pair operator two edges, either from different routes or from the same

one, are swapped;

– 2-Opt operator 2 edges fi; i þ 1g and fj; j þ 1g from the same route are

replaced by the edges fi; jg and fi þ 1; j þ 1g;

– 2-Opt* operator given two edges fi; i þ 1g and fj; j þ 1g belonging to two

different routes, orders i þ 1 and j þ 1 are swapped.

Exploiting sets of independent...

123

4.2 Destroy and repair

After a certain number of non-improving iterations have been observed, the current

solution is perturbed by means of one of the following destroy operators (see, e.g.,

Koç et al. 2015):

– Random removal p orders are randomly chosen and removed from their

respective routes;

– Cluster removal an order i is randomly chosen. Order i and the p � 1 orders

closest to i are removed from their respective routes;

– Pair removal p/2 orders are randomly chosen. For each of these orders, the

closest order not already selected is also chosen. Then all the selected orders are

removed from their respective routes;

– Smart removal inspired by Rousseau et al. (2002). An order i is randomly

chosen. Then the p � ‘� 1 order closest to i and the ‘ orders with the closest

position to i in the route are selected. The order i and all the selected orders are

removed from their respective routes.

The destroy operator is selected randomly at each cycle. To repair the solution, we

apply a best insertion heuristic. However, each order cannot be inserted back in the

same route it belonged to before the destroy phase.

4.3 MIP formulation for the selection of the best independent set of moves

Given a set M ¼ fmigi2I of legal and non tabu moves over the incumbent solution,

let C � M � M be the set of conflicting move pairs, i.e., all the pairs that violate

independence in Definition 3. Formally, the set C is defined as ðmi;mjÞ 2 M � M

such that either:

ðRmi
[Imi

Þ \ ðRmj
[Imj

Þ 6¼ ;; or
EsnðRmi

[Rmj
Þ

� �
[ðImi

[Imj
Þ contains subtours:

In the Appendix we report sufficient conditions to evaluate the set C for the moves

defined in Sect. 4.1.

The neighborhood that we consider in our approach is defined as all the solutions

that can be obtained by applying a subset of independent moves (of the type

described in the previous section). It is exponential in size, as it is a superset of the

one considered in Ergun et al. (2006).

As we mentioned in the introduction, considering only subsets of independent

moves with some further restrictions may allow for the use of polynomial-time

algorithms. In our approach, we aim at exploring the whole neighborhood, thus we

resort to a MIP algorithm. An optimal set of independent moves can be extracted

from M by solving the following mathematical program:

min
X

i2I
DðmiÞdi ð4Þ

T. Bianconcini et al.

123

s.t. di þ dj � 1 8i; j : ðmi;mjÞ 2 C ð5Þ

Lr þ
X

i2I
kðr;miÞdi �Q 8 route r ð6Þ

X

i2I
di � 1 ð7Þ

di 2 f0; 1g 8 i 2 I ð8Þ

where the binary variables di are 1 if an only if the move mi 2 M is in the subset of

selected moves, Lr is the load on route r, kðr;miÞ is the variation of the load on

route r after applying the move mi and Q is the capacity of each vehicle.

This is a standard weighted independent set formulation with additional side

constraints. Constraints (5) imply that only one move for each pair of conflicting

moves can be selected. Constraints (6) are capacity constraints, ensuring that the

total capacity of each route is not exceeded. Note that the routing solution is feasible

after all the selected moves have been applied. This means that we are also

considering single moves that would be infeasible on their own, but, combined with

other ones, allow for the overall feasibility to be recovered. This is also instrumental

in avoiding local minima, as we will show later. Constraints (7) ensure that at least

one move is applied, even if non-improving.

In exact branch-and-cut approaches for independent set problems (see, e.g.,

Nemhauser and Wolsey (1988)), it is customary to separate valid inequalities that

strengthen the formulation. It is out of the scope of this work to solve

Formulation (4)–(8) to optimality—indeed, using the MIP solver as a piece of a

heuristic framework, we are satisfied with solutions which are sufficiently good.

However, we can exploit the structure of our problem to easily enumerate a number

of cliques in the conflict graphs. In particular, it is easy to observe that each edge

e 2 E corresponds, in the conflict graph, to a clique including all the moves that

affect that edge, i.e., such that e 2 Rm [Im. Then, we can add the inequalities:
X

i2I :e2Rmi
[Imi

di � 1 8e 2 Es ð9Þ

and remove the subset of Constraints (5) that are dominated by these stronger cuts.

In the context of a tabu search algorithm, the MIP model can be integrated by

treating Constraint (6) as a soft constraint:

Lr þ
X

i2I
kðr;miÞdi �Q þ yr ð10Þ

where yr � 0 is the excess variable for route r, that is penalized in the objective

function with a penalty term lryr, using the adaptive weights from the tabu search,

as we will show in Sect. 5.

An issue that may arise in practice is that, when TSIS reaches a local minimum,

and no improving move is available in the neighborhood, the MIP will simply select

the less worsening move and discard all the others. This is consistent with the

Exploiting sets of independent...

123

standard tabu search behavior. However, in our case this means wasting a lot of

computational power, because of the MIP, just to select one single move. Taking

this into account, it seems reasonable to replace the bound in Eq. (7) with a larger

one:
X

i2I

di � maxfb
ffiffiffi
R

p
c; 2g

where R is the number of vehicles. This strategy does however have some draw-

backs. As an example, consider the case of being only 1 move away from the

optimal solution. If the MIP is forced to choose at least two solutions, then it will

probably choose the ‘‘optimal’’ one, and a second one on an unrelated route. Tabu

lists will then prevent such second move to be undone in the next iterations.

However, in this case we can see that all the routes comprising the optimal solution

have been found by TSIS —they just were not found simultaneously. In such case,

solving a set—covering problem at the end of the algorithm would allow us to

recover the optimal solution.

4.4 Set-covering refinement phase

Following what we mentioned in the previous section, we can add to our method a

final refinement phase with the aim to recover and combine good routes that have

been generated during the local search phase.

Let R be the set of all the feasible routes found by TSIS during all the iterations.

Consider a partition of R into P subsets Ri; i 2 f1. . .Pg such that two routes rj and

rk belong to the same subset if and only if the set of nodes touched by the edges of rj

and by the edges rk are the same. We define such set as N i, excluding the depot. For

every subset Ri, we define

cRi
¼ min

r2Ri

costðrÞ

and

sRi
2 argmin

r2Ri

costðrÞ

where cost(r) is the cost of route r. In case there are more than one lowest cost

solution withinRi, sRi
can be any one of them. We can then formulate the following

set–covering problem, introducing binary variables di; i 2 f1. . .Pg, which denote

whether the route with the lowest cost of Ri is included in the solution:

min
X

i2f1...Pg
cRi

di ð11Þ

s.t.
X

i:u2N i

di � 1 8u 2 V : u is not the depot ð12Þ

di 2 f0; 1g: ð13Þ

T. Bianconcini et al.

123

Consider the VRP solution s obtained by

s ¼
[

i:di¼1

sRi
:

It is easy to see that this represents a feasible solution which covers all the nodes in

the original VRP problem, and whose cost is either equal to the cost of the best

solution found by the tabu search, or lower.

Set covering approaches for the selection of good routes among sets generated by

heuristic algorithms have been proposed, e.g., by Boschetti and Maniezzo (2015),

who also propose a fast method to solve the set covering model, by Corman et al.

(2015) who used a set covering approach within a local search method based on ant-

colony, or by Pillac et al. (2013), just to cite a few recent papers which are all based

on a similar idea.

On a practical note, we implemented two simple tricks that lead to a measurable

improvement in the MIP solver speed. Since we know in advance how many routes

the solution can be composed of, we can greatly reduce the solution space with the

constraint:
X

i2f1...Pg
di ¼ R;

where R is the number of vehicles. Moreover, the best solution found so far by TSIS

is used as a starting point (or ‘‘warm start’’) when we invoke the MIP solver.

5 Numerical results

5.1 Implementation details

The initial solution is computed through a greedy best insertion heuristic. The

destroy and repair phase starts after 50 consecutive iterations without improvements

on the local solution. The parameters p and ‘ of the destroy operator have been set

up to:

p ¼ b
ffiffiffi
n

p
c þ 1

‘ ¼ b0:25 � pc

�

;

where n is the number of orders. As commonly done in the literature, we did not

enforce the capacity as hard constraints, but we rather used soft constraints with

linear penalties. The penalty weights lr, initialized to 100 for every route r, are

updated using the following rules:

– if the whole solution is feasible, then divide the penalties for every route by 1.1;

– if the solution is infeasible, then multiply the penalties by 2, but only for

infeasible routes. Leave the other penalties unchanged;

– in any case, restrict the penalties to the range [0.1, 1000].

Exploiting sets of independent...

123

The same penalty weight of the tabu search are used in the MIP for the selection of

independent moves, as mentioned in Sect. 4.3. In order to achieve better

performance, we decided to put a limit to the number of moves to be considered

within the MIP. Only the 1000 non-tabu moves with the best objective function

improvement are selected as candidates at every iteration. Moreover, we set a time

limit of 60 seconds (although it is never reached in our experiments) and a relative

MIP gap stopping criterion of 10%. In Sect. 4.2, we report an experiment on the

sensitivity of the algorithm to the choice of these parameters.

At the end of TSIS, the set covering model described in Sect. 4.4 can be used to

further improve the best solution. In what follows, we refer to the approach that

includes this final refinement phase as TSIS-SC.

We ran the numerical experiments on a Desktop PC Intel(R) Xeon(R) CPU E5-

2430 v2 @2.50 GHz, with Ubuntu 16.04.1. The algorithm was implemented in

C??11, while, as a MIP solver, we used Gurobi 6.5 (Gurobi Optimization (2016)).

In order for the comparison with other single-thread tabu search methods to be fair,

we restricted it to only use 1 thread.

5.2 Results

In our computation experiments, we set out to assess the improvement that can be

obtained through the use of a clever selection of sets of simultaneous moves, as

opposed to a greedy choice. We first performed experiments on a smaller dataset

from Ergun et al. (2006), which contains instances that are widely used in the VRP

literature, and than we performed more extensive runs on the dataset recently

introduced in Uchoa et al. (2017). Our aim is to show that an elementary method,

equipped with our independent set component, can deliver solutions whose quality

is very close to those obtained with much more sophisticated approaches.

5.2.1 Experiments with Ergun et al. (2006) dataset

Our first experiments have been performed with the dataset of Ergun et al. (2006).

The aim was to check whether the much expanded set of candidate moves among

which we chose is capable of producing an improvement which justifies the extra

computational effort due to the choice of using a MIP solver. The instances we used

were those with a single capacity constraint—of course, it would be very easy to

extend our model to deal also with an additional, similar, constraint, as in some of

the test cases in Ergun et al. (2006). We ran, as in Ergun et al. (2006), five

independent tests on the dataset, with different random seeds, and in Table 1 we

report some statistics on the quality of the solution found by our method in 2 h of

CPU time for the first phase, and a set-covering refinement phase of 10 min.

The comparison between our results and those published in Ergun et al. (2006)

show a clear advantage of our approach for what concerns the solution quality. In all

the instances, TSIS-SC is able to beat the best solution found by the algorithm in

Ergun et al. (2006). Moreover, in 16 out of 19 instances even the average value over

the 5 runs of TSIS-SC is at least as good as that of the best solution obtained by

Ergun et al.

T. Bianconcini et al.

123

We also used the dataset of Ergun et al. (2006) to validate the choice of some

parameters and to check the sensitivity of the results with respect to the choice. We

performed a very limited set of experiments changing, one at a time, two

parameters: the maximum number of non-tabu moves with the best objective

function improvement selected for the MIP formulation (default 1000), and the

relative gap used for stopping the solution of the MIP model (default: 10%). Both

parameters control the trade-off between the accuracy of the move selection phase,

and the time devoted to it. Figure 1 reports a summary of results showing that from

one side our choice of parameters was quite good and, on the other side, that the

sensitivity of the algorithm to this choice is not too high.

Concerning the number of candidate moves at each iteration (Fig. 1, left), the

number of constraints in the MIP model grows quadratically with their cardinality,

so that it becomes challenging to build and solve the problem in a short time if a

larger number of them is considered. On the other hand, reducing the search space

too much yields a worse overall performance. Figure 1 (right) suggests that

reducing the relative gap stopping criterion does not significantly improve the

Table 1 A numerical comparison between the proposed algorithm and the results in Ergun et al. (2006)

Problem TSIS-SC Ergun et al. % Gap TSIS-SC vs Ergun et al.

Best Avg Best

E50-05 524.61 524.61 524.61 0.00

E75-10 835.26 835.26 835.43 -0.02

E100-08 826.14 827.79 826.14 0.00

E100-10 819.56 819.56 819.56 0.00

E120-07 1042.11 1042.11 1042.11 0.00

E150-12 1028.42 1028.69 1033.01 -0.44

E199-17 1291.71 1296.97 1303.21 -0.88

E240-22 707.80 708.06 709.66 -0.26

E252-27 859.47 861.11 869.26 -1.13

E255-14 584.52 585.36 586.44 -0.33

E300-28 997.02 999.16 1010.70 -1.35

E320-30 1082.63 1085.99 1092.29 -0.88

E323-16 743.10 745.17 745.26 -0.29

E360-33 1372.58 1375.78 1385.84 -0.96

E396-34 1347.50 1350.28 1357.97 -0.77

E399-18 920.01 924.28 922.09 -0.23

E420-41 1826.27 1830.81 1854.54 -1.52

E480-38 1626.03 1635.92 1642.92 -1.03

E483-19 1114.05 1122.34 1121.15 -0.63

Columns report: the best result (out of five independent runs) obtained by TSIS-SC, the average TSIS-SC

cost, the cost reported by Ergun et al. (best out of five runs) and the percentage gap between TSIS-SC and

Ergun best costs

Exploiting sets of independent...

123

quality of the combined moves: indeed, good solutions are found pretty quickly by

the MIP solver, and most of the time would be spent certifying its optimality, with

only marginal improvements of the primal bound.

5.2.2 Experiments with the ‘‘X’’ dataset by Uchoa et al. (2017)

We performed our more extensive computational experiments using the dataset

recently introduced in Uchoa et al. (2017). The dataset is comprised of 100 realistic

VRP instances, with a number of nodes ranging from 100 to 1000 and a number of

vehicles ranging from 10 to 207, generated with a great variety of parameters such

as demand distribution, depot positioning, and average route size. Using the same

notation used in the dataset, in the following tables a problem with i nodes

(including the depot) and j vehicles will be denoted as X-ni-kj. All the gaps in the

following results have been computed with respect to the best solution reported

in Uchoa et al. (2017).

In order to further validate the correctness of our approach, and to assess the

impact of the main algorithmic components, we started by comparing the basic tabu

search algorithm (without independent sets of moves) with TSIS. Both algorithms

share the same code base, with the algorithmic details described in Sect. 3, except

for the move selection policy. We have put a 2 h time limit on both algorithms. The

results are summarized in Fig. 2, with and without the final set-covering refinement

phase on the routes generated by the local search. We can see that the TSIS

approach gives a substantial improvement with respect to the plain tabu search (TS):

using the same amount of computational resources, the solution gap medians and

quartiles are roughly reduced by a factor of 3. Additionally, the pure tabu search was

unable to find a feasible solution on three problems within the dataset (X-n586-

k159, X-n819-k171, and X-n916-k207). Those problems have a number of vehicles

which is quite high with respect to the rest of the dataset, and are tightly constrained

with respect to capacity. On those problems, the basic tabu search seems unable to

solve the underlying bin packing problem defined by the capacity constraints. In our

computational experiments, TSIS did not suffer from this limitation.

Fig. 1 Sensitivity analysis on Ergun et al.’s dataset: percentage gap between the actual and the overall
best observed cost, as a function of the number of candidate moves in each MIP model (left), and the
relative gap used as a stopping criterion in the MIP algorithm (right)

T. Bianconcini et al.

123

It is interesting to note that the number of iterations performed by the tabu search

in the same amount of time varies from 90 times (on smaller instances) to five times

(on larger instances) the ones made by TSIS. However, TSIS consistently achieves a

much better solution quality, suggesting that it is worth to devote some extra CPU

time at every iteration to make sure that a good set of moves is selected.

Focusing on the impact of the different components, it is clear that, although the

set-covering is beneficial for both methods, the main improvement is given by the

use of the MIP-based move selection component.

Finally, we performed more intensive runs with TSIS-SC only, setting the time

limit at 16 h for every problem, with 2 h of refinement phase. Results are displayed

in Table 2. With ‘‘Best TSIS-SC’’ and ‘‘average TSIS-SC’’ we denote the best and

average cost of the solution found by TSIS-SC in 5 runs; the columns ‘‘% gap

(best)’’ report the percentage gap between the best result found by TSIS-SC and the

best found in 50 runs of ILS-SP (Subramanian et al. 2013) and UHGS (Vidal et al.

2014) respectively. Analogously, the following two columns report the comparison

between average results by our method (over 5 runs) and the averages over 50 runs

of ILS-SP and of UHGS. We can see that, for problems with up to 200 nodes, TSIS-

SC is able to find the optimal solution most of the times, and stays well within the

1% optimality gap when it does not. The optimality gap slightly increases for

problems with a high number of nodes, suggesting the need for either more

computational resources, or some refinement in the solution strategy.

We can observe that TSIS-SC displays a very good performance when compared

with state of the art, refined methods; the gap with respect to both ILS-SP and

UHGS are consistently very low, despite the fact that our method was executed only

5 times, while both benchmark algorithms were run 50 times. In more than a few

cases our method found an improved solution and the median gap between our

Fig. 2 Boxplot showing the percentage gap to the best solution found by UHGS in Uchoa et al. (2017)
after 2 CPU hours of TS and TSIS, with and without set-covering phase (15 min). The use of independent
sets of moves gives a significant performance boost. The SC phase is especially useful for TSIS due to the
reasons mentioned at the end of Sect. 3.3, but its effect is marginal compared to the difference obtained
by the move selection policy

Exploiting sets of independent...

123

Table 2 Results of the best out of 5 independent runs of TSIS vs 50 runs of ILS-SP (Subramanian) and

50 runs of UHGS (Vidal) as reported in Uchoa et al. (2017)

Name Best TSIS-SC Average TSIS-SC % Gap (best) % Gap (average) Proven

optimal

ILS-SP UHGS ILS-SP UHGS

X-n101-k25 27,591 27,591.00 0.00 0.00 0.00 0.00 Yes

X-n106-k14 26,373 26,402.80 0.04 -0.02 0.10 0.08 Yes

X-n110-k13 14,971 14,971.00 0.00 0.00 0.00 0.00 Yes

X-n115-k10 12,747 12,747.00 0.00 0.00 0.00 0.00 Yes

X-n120-k6 13,332 13,334.40 0.00 0.00 -0.02 0.02 Yes

X-n125-k30 55,539 55,539.00 0.00 0.00 -0.24 -0.01 Yes

X-n129-k18 28,940 28,956.00 -0.03 0.00 -0.14 0.03 Yes

X-n134-k13 10,916 10,931.20 0.00 0.00 -0.15 -0.03 Yes

X-n139-k10 13,590 13,590.00 0.00 0.00 -0.10 0.00 Yes

X-n143-k7 15,726 15,729.60 0.00 0.17 -0.10 0.19 Yes

X-n148-k46 43,448 43,448.00 0.00 0.00 -0.01 0.00 Yes

X-n153-k22 21,225 21,245.80 -0.54 0.02 -0.72 0.09 Yes

X-n157-k13 16,876 16,877.20 0.00 0.00 0.01 0.01 Yes

X-n162-k11 14,138 14,141.00 0.00 0.00 -0.13 0.00 Yes

X-n167-k10 20,557 20,626.00 -0.02 0.00 0.08 0.31 Yes

X-n172-k51 45,607 45,607.00 0.00 0.00 -0.02 0.00 Yes

X-n176-k26 47,832 47,857.80 -0.64 0.04 -0.81 -0.21 Yes

X-n181-k23 25,570 25,591.20 0.00 0.00 0.08 0.00 Yes

X-n186-k15 24,152 24,173.00 0.03 0.03 -0.05 0.11 Yes

X-n190-k8 16,992 17,011.40 -0.54 0.07 -0.77 0.14 Yes

X-n195-k51 44,225 44,245.80 0.00 0.00 0.03 0.00 Yes

X-n200-k36 58,660 58,694.80 0.06 0.14 0.00 0.12 Yes

X-n204-k19 19,585 19,660.60 0.08 0.10 0.18 0.46 Yes

X-n209-k16 30,692 30,749.80 0.08 0.12 -0.05 0.23 Yes

X-n214-k11 11,052 11,082.40 0.61 1.81 -0.40 1.88 Yes

X-n219-k73 117,595 117,597.20 0.00 0.00 0.00 -0.01 Yes

X-n223-k34 40,480 40,554.20 0.02 0.11 0.05 0.14 Yes

X-n228-k23 25,804 25,847.40 0.24 0.24 0.20 0.26 Yes

X-n233-k16 19,387 19,405.40 0.63 0.82 0.36 0.61 Yes

X-n237-k14 27,089 27,164.40 0.17 0.17 0.32 0.36 Yes

X-n242-k48 82,820 82,965.80 0.06 0.02 0.11 0.02 No

X-n247-k50 37,278 37,282.60 -0.03 0.01 -0.60 0.00 Yes

X-n251-k28 38,825 38,898.20 0.25 0.33 0.15 0.26 No

X-n256-k16 18,889 18,910.60 0.05 0.05 0.14 0.16 No

X-n261-k13 26,775 26,834.20 0.26 0.82 -0.13 0.77 No

X-n266-k58 75,478 75,666.40 0.00 -0.05 0.14 -0.12 Yes

X-n270-k35 35,351 35,407.20 0.08 0.14 0.12 0.11 No

X-n275-k28 21,245 21,283.00 0.00 0.00 0.13 0.01 Yes

X-n280-k17 33,651 33,715.40 0.08 0.44 -0.16 0.33 No

T. Bianconcini et al.

123

Table 2 continued

Name Best TSIS-SC Average TSIS-SC % Gap (best) % Gap (average) Proven

optimal

ILS-SP UHGS ILS-SP UHGS

X-n284-k15 20,509 20,562.00 1.05 1.39 0.56 1.36 No

X-n289-k60 95,736 95,864.40 0.44 0.52 0.43 0.41 No

X-n294-k50 47,320 47,437.20 0.28 0.32 0.39 0.38 No

X-n298-k31 34,241 34,301.80 0.01 0.03 -0.16 0.03 Yes

X-n303-k21 21,889 21,946.20 0.35 0.65 0.23 0.44 No

X-n308-k13 26,037 26,068.60 0.53 0.69 -0.12 0.67 No

X-n313-k71 94,308 94,588.80 0.12 0.23 0.31 0.34 No

X-n317-k53 78,359 78,387.00 0.01 0.01 0.04 0.00 Yes

X-n322-k28 29,968 30,031.00 0.30 0.33 0.13 0.25 No

X-n327-k20 27,713 27,763.60 0.41 0.54 -0.18 0.49 No

X-n331-k15 31,128 31,174.40 0.07 0.08 -0.20 0.05 No

X-n336-k84 139,235 139,772.60 0.03 0.02 0.22 0.17 No

X-n344-k43 42,265 42,395.80 0.28 0.39 0.26 0.44 No

X-n351-k40 26,184 26,334.00 0.63 0.92 0.70 1.23 No

X-n359-k29 52,161 52,197.20 0.88 1.27 0.23 0.92 No

X-n367-k17 22,821 22,968.40 -0.35 0.03 -0.15 0.57 No

X-n376-k94 147,713 147,729.80 0.00 0.00 0.01 -0.01 Yes

X-n384-k52 66,568 67,015.80 0.68 0.74 0.97 1.13 No

X-n393-k38 38,510 38,587.00 0.55 0.63 0.34 0.55 No

X-n401-k29 66,707 66,861.40 0.38 0.70 0.22 0.75 No

X-n411-k19 19,829 19,931.80 0.19 0.56 -0.12 0.95 No

X-n420-k130 107,798 107,892.60 0.00 0.00 0.05 -0.03 Yes

X-n429-k61 66,117 66,287.40 0.84 0.94 0.82 0.97 No

X-n439-k37 36,452 36,571.60 0.16 0.16 0.36 0.33 No

X-n449-k29 56,514 56,605.20 1.35 2.05 0.71 1.89 No

X-n459-k26 24,495 24,559.60 1.18 1.30 0.40 1.18 No

X-n469-k138 222,139 222,474.60 0.10 0.03 0.13 -0.06 No

X-n480-k70 90,316 90,572.20 0.69 0.87 0.78 0.90 No

X-n491-k59 67,801 68,031.00 1.25 1.75 1.20 1.69 No

X-n502-k39 69,484 69,553.80 0.29 0.33 0.30 0.32 No

X-n513-k21 24,394 24,450.80 0.25 0.80 0.07 0.63 No

X-n524-k153 154,611 154,639.40 -0.06 -0.11 -0.24 -0.22 No

X-n536-k96 95,880 96,103.60 0.37 0.80 0.42 0.81 No

X-n548-k50 87,331 87,498.00 0.72 0.59 0.72 0.57 No

X-n561-k42 43,346 43,460.00 0.92 1.38 0.76 1.38 No

X-n573-k30 51,184 51,222.60 0.18 0.80 0.10 0.60 No

X-n586-k159 190,993 191,497.00 0.20 0.24 0.30 0.35 No

X-n599-k92 110,342 110,773.60 1.18 1.41 1.27 1.57 No

X-n613-k62 60,624 61,051.40 0.66 1.42 1.00 1.82 No

X-n627-k43 63,286 63,370.80 0.80 1.48 0.74 1.35 No

Exploiting sets of independent...

123

algorithm and UHGS is well below 0.5%, thus confirming the validity of the

approach.

6 Conclusions

Our aim while performing this research effort was to check whether the application

of carefully chosen sets of independent moves is beneficial for a standard algorithm

for VRP. Our intention was to show that, by suitably defining the concept of

Table 2 continued

Name Best TSIS-SC Average TSIS-SC % Gap (best) % Gap (average) Proven

optimal

ILS-SP UHGS ILS-SP UHGS

X-n641-k35 65,330 65,631.20 1.35 2.34 1.59 2.24 No

X-n655-k131 106,816 106,908.00 0.03 -0.01 0.12 0.01 Yes

X-n670-k130 147,192 147,503.80 0.10 0.33 -0.12 0.19 No

X-n685-k75 69,985 70,210.40 1.95 2.28 1.77 2.27 No

X-n701-k44 83,887 84,165.40 1.21 1.94 1.35 2.03 No

X-n716-k35 44,611 44,871.00 1.34 2.50 1.58 2.82 No

X-n733-k159 137,085 137,512.40 0.18 0.53 0.34 0.68 No

X-n749-k98 79,263 79,525.00 1.68 1.99 1.60 2.13 No

X-n766-k71 117,682 118,134.60 1.94 2.62 2.07 2.59 No

X-n783-k48 74,720 74,963.80 1.73 2.66 1.68 2.68 No

X-n801-k40 74,314 74,530.80 0.66 0.99 0.71 1.08 No

X-n819-k171 160,751 160,885.00 1.00 1.35 0.92 1.25 No

X-n837-k142 197,341 197,726.40 1.30 1.58 1.38 1.67 No

X-n856-k95 89,853 90,069.40 0.89 0.82 0.89 0.93 No

X-n876-k59 101,319 101,524.60 1.14 1.61 1.10 1.64 No

X-n895-k37 55,796 56,129.20 1.98 3.00 2.13 3.10 No

X-n916-k207 332,942 333,353.00 0.70 0.94 0.73 0.96 No

X-n936-k151 134,897 135,788.80 0.98 1.32 0.94 1.70 No

X-n957-k87 86,912 87,102.60 1.42 1.45 1.36 1.49 No

X-n979-k58 121,002 121,775.20 0.84 1.52 1.27 1.90 No

X-n1001-k43 74,059 74,589.40 0.38 1.81 0.82 2.24 No

Min -0.64 -0.11 -0.81 -0.22

Max 1.98 3.00 2.13 3.10

Avg. 0.42 0.65 0.36 0.69

Median 0.19 0.33 0.15 0.37

The first two columns represent the best and the average result obtained by our method; the following two

columns report the gap between our best solution and the best reported for ILS-SP and UHGS. Similarly,

the two following columns report the average gaps between our average result and the average results

obtained by ILS-SP and UHGS. The last column indicates whether the best result here reported has been

proven to be optimal according to Uchoa et al. (2017)

T. Bianconcini et al.

123

independence and by exploiting the power of modern MIP solvers, significant

advantages can be expected even for the most studied VRP variant. We have also

introduced a formal definition of independence and proven some properties which

form the basis for the correctness of the proposed approach.

Through a large set of numerical experiments we have shown that using moves

suggested by a MIP model greatly improves the quality of a basic VRP heuristic.

This supports the idea that, notwithstanding its computational burden, plugging our

MIP-based neighborhood search in any of the several powerful state-of-the-art

methods for VRP might yield significant improvements. We have also shown that,

thanks to this idea, a simple-minded heuristic algorithm is capable of discovering

solutions whose quality is equal, or very close, to that found by the best, and

significantly more complex, methods available. This opens the way towards more

specialized implementations for different and more complex variants of VRP. In

order to do so, we can either establish different (and more restrictive) independence

definitions (e.g., for graphs with asymmetric costs, pairs of nested moves can be

forbidden due to the reversal of some arcs), or reformulate the move selection

problem to account for the peculiarities of the variant at hand. Another direction

which might be promising is to substitute the MIP algorithm with a carefully

designed heuristic method, capable of producing good sets of independent moves in

a substantially smaller computational time.

Acknowledgements We are grateful to both reviewers and the associate editor for their stimulating

comments on the first version of this paper: answering those comments helped us to significantly improve

the quality of this paper.

Appendix

In this section we will provide the conditions required in order to safely combine

sets of legal moves. First we show that, under suitable conditions, each of the moves

considered in TSIS is legal.

Proposition 2 Given a well-formed solution s, a relocate(v,{y,z}) move m

that moves the order v into the edge fy; zg 2 Es, with v 6¼ y, v 6¼ z, is legal.

Proof By definition of the relocate operator, Rm ¼ ffu; vg; fv;wg; fy; zgg where u

and w are the two nodes adjacent to v, and Im ¼ ffy; vg; fv; zg; fu;wgg. It is easy to

verify that Rm � Es, and Im \ ðEsnRmÞ ¼ ;, even in the case where u ¼ y and/or

w ¼ z, otherwise s could not be a well-formed solution. It is also trivial to verify that

the move preserves the degree of the involved nodes.

Finally, suppose by contradiction that the move creates subtours when applied on

a well-formed solution s. Let T be the set edges comprising such subtour. Note that,

if fy; vg 2 T , then also fv; zg 2 T , otherwise the degree of v would not be preserved.

Then three cases can happen

– T \ Im ¼ ;. Then also T � Es, so s is not a well-formed solution.

– fu;wg 2 T . Then consider the set T 0 ¼ ðTnfu;wgÞ [ffu; vg [fv;wg. Since

this operation replaces the arc fu;wg with the pair fu; vg and fv;wg, also T 0

Exploiting sets of independent...

123

contains a tour. But we can see that by construction T 0 � Es, so s is not a well-

formed solution.

– fy; vg 2 T and fv; zg 2 T . Then consider T 0 ¼ ðTnfy; vgnfv; zgÞ [fy; zg. Fol-
lowing the same reasoning as the previous case, we can see that also T 0 contains
a tour, and that T 0 � Es, so again s is not a well-formed solution.

Proposition 3 Given a well-formed solution s, an exchange(v,y) move that

swaps two orders v and y is legal.

Proof By definition of the exchange operator, Rm ¼ ffu; vg; fv;wg; fx; yg; fy; zgg
where u, w and x, z are the nodes adjacent to v and y, respectively, and

Im ¼ ffu; yg; fy;wg; fx; vg; fv; zgg. It is easy to verify that Rm � Es, and

Im \ ðEsnRmÞ ¼ ;, even in the case where w ¼ x and/or u ¼ z, otherwise s could not

be a well-formed solution.

The move preserves the degree of the involved nodes, and does not create sub-

tours. The proof is trivial and follows the exact same structure as the one for the

relocate operator. h

Proposition 4 Given a well-formed solution s, a relocate-pair({v,w},
{y,z}) move m that relocates the edge fv;wg 2 Es into the edge fy; zg 2 Es is legal.

Proof Let us denote by u 6¼ w the other node adjacent to v in Es (i.e., fu; vg 2 Es)

and analogously x 6¼ u is adjacent to w. Then this move is defined through

Rm ¼ ffu; vg; fw; xg; fy; zg; fv;wgg
Im ¼ ffu; xg; fy; vg; fv; zg; fv;wgg

and the proof proceeds similarly to the previous one. h

Notice that in the definition of this move we chose to insert edge fv;wg both in

Rm and in Im. This will prove useful in order to to ensure that the edge fv;wg
remains in Es when combining this move with other ones, as we will see later.

Proposition 5 Given a well-formed solution s, an exchange-pairs({v,w},
{y,z}) move that swaps two edges fv;wg 2 Es and fy; zg 2 Es is legal.

The proof is omitted, as trivial and similar to the previous ones. As before, we

assume that both edges fv;wg and fy; zg appear both in Rm and in Im in order to

ensure that they are not removed by other moves, when we will combine them.

Theorem 1 A set M of legal moves of the type relocate, exchange,
relocate-pair, exchange-pairs with no edge overlap over a well-formed

solution s is independent in the sense of Definition 3.

Proof We need to show that the solution obtained after applying all the moves in M

does not contain subtours. To do so, consider any sequence of moves in M, in any

order. The first move m1 can be applied to s, and m1ðsÞ is still well-formed, by

hypothesis and hence does not contain subtours.

Consider the n-th move in the sequence and consider the n � 1 moves applied

before. Let sn�1 denote the solution obtained after the application of these moves,

T. Bianconcini et al.

123

and assume that it does not contain subtours. The n-th move can be applied since the

edges affected by mn are, by hypothesis, non-overlapping with all the other ones, so

the edges in Rmn
belong to sn�1 and Imn

do not. Then by Propositions 2–5 move mn is

legal, sn is well-formed, so it does not contain subtours. The claim follows by

induction. h

Extension to 2-opt moves

In the previous subsection we have proved that several classes of moves can be

safely combined. More specifically, it is always safe to combine non-overlapping

relocate, exchange, relocate-pair, and exchange-pairs moves,

due to the fact that the only requirements for them to be legal is that the edges in Rm

are in the solution they are applied to (and those in Im are not). More complex moves

require some additional pre-conditions in order to avoid sub-tours. For 2-opt
moves, these conditions depend on the relative order of the nodes in the tour.

Let us define a path p as an ordered sequence of nodes which are pairwise

adjacent in the solution s. A path is simple if no node appears more than once in it.

For any two nodes u, v in the same route, the path p induces a partial ordering 	p

such that u 	p v if u precedes v in the path p. Observe that u and v are not required

to be adjacent.

Proposition 6 Given a well-formed solution s, a 2-opt({u,v},{y,z}) move

m over s, defined as Rm ¼ ffu; vg; fy; zgg � Es and Im ¼ ffu; yg; fv; zgg 6� Es, with

u, v, y, z belonging to the same tour (route), is legal if and only if there is a simple

path p where u 	p v 	p y 	p z.

Proof If a simple path p with u 	p v 	p y 	p z exists, then cutting the edges Rm ¼
ffu; vg; fy; zgg in the tour creates two disconnected components: a path P1 that

contains u and z at the two ends, and a path P2 with v and y at the two ends. The

nodes u, v, y, z have degree 1 after the cut. Inserting the edges Im ¼ ffu; yg; fv; zgg
fulfills the degree condition, and it reconnects the two components, creating a single

tour. Thus the move is legal.

Let us now assume that there is no simple path p over the considered route with

u 	p v 	p y 	p z. Since umust be adjacent to v, and y to z, it is easy to verify that there

must be a path q such that v 	q u 	q y 	q z. If such path exists, removing the edges

Rm ¼ ffu; vg; fy; zgg creates two disconnected components: a path p1 with endpoints

v and z, and a path p2 with endpoints u and y. Inserting the edges Im ¼ ffu; yg; fv; zgg
fulfills the degree condition, but it does not reconnect the components, creating two

disconnected subtours. Then the precedence must hold, and the claim follows. h

When combining 2-opt moves, then, we must pay particular care to maintain

the necessary and sufficient condition in Proposition 6. To show how this can be

achieved, let us start with the definition of nested 2-opt moves (see Fig. 3).

Definition 4 Given two 2-opt moves mi ¼ 2� optðfui; vig; fyi; zigÞ and mj ¼
2� optðfuj; vjg; fyj; zjgÞ over the same route of a solution s, let �pi be the set of

nodes in the simple path that connects vi to yi not passing through the depot, and let

Exploiting sets of independent...

123

�pj be the set of nodes in the path that connects vj to yi not passing through the depot.

Three cases can occur:

– if �pi � �pj, we say that mi is nested into mj;

– if �pi \ �pj ¼ ;, we say that mi and mj are disjoint;

– if �pi \ �pj 6¼ ;, but neither is nested in the other, we say that mi and mj are

intertwined.

Two 2-opt moves are intertwined if neither is nested into the other. Applying

simultaneously two intertwined 2-opt moves does not guarantee the absence of

subtours, as shown in Fig. 4.

Definition 5 Let �E � Es be a set of edges belonging to the same route. Consider

any partial ordering on the nodes of the edges in �E and a simple directed path

following that order that connects all the nodes in the route.

We say here that a move preserves the relative order of �E if, after its application

to s, the edges in �E still belong to the same tour, and it is still possible to find a path

over such tour so that the chosen partial ordering of the nodes of the edges in �E is

preserved.

Note that no partial ordering can be defined on edges that belong to different

tours.

Two preliminary results are needed before we can finally prove how 2-opt
moves can be safely combined with the others.

Lemma 1 Given a well-formed solution s, a move m of the type relocate,
exchange, relocate-pair, exchange-pairs, preserves the relative order

of any pair of edges fu; vg, fx; yg not affected by the move.

Proof Consider a legal relocate move m that moves the order b with adjacent

nodes a, c into the edge ff ; gg. Assume that a simple path p induces the ordering

u 	p v 	p x 	p y. We can distinguish two cases:

– p does not include the edges in Rm. Then the same path also exists in m(s), so the

order is trivially preserved.

– p includes fa; b; cg. Assume that p is defined as p ¼ ðu; v; . . .; a; b; c; . . .; x; yÞ.
Then consider in m(s) the path q ¼ ðu; v; . . .; a; c; . . .; x; yÞ, where the edge fa; cg
has been inserted by applying m. Over q, u 	q v 	q x 	q y.

Fig. 3 The move mi (that removes the dashed edges) is nested in mj (that removes the dotted edges).

Applying both moves on s (left) does not introduce subtours (right)

T. Bianconcini et al.

123

– p includes ff ; gg. Assume that p is defined as p ¼ ðu; v; . . .; f ; g; . . .; x; yÞ. Then
consider in m(s) the path q ¼ ðu; v; . . .; f ; b; g; . . .; x; yÞ, where the edges ff ; bg
and fb; gg have been inserted by applying m. Over q, u 	q v 	q x 	q y.

Analogous arguments can be applied to show the claim holds also for the other types

of moves. h

Lemma 2 Given a well-formed solution s, a legal 2-opt move m preserves the

relative order of any two edges fu; vg, fx; yg
if they belong to the same of the two connected components in EsnRm.

Proof Assume that a simple path p induces the ordering u 	p v 	p x 	p y. Taking

into account the move m, we can distinguish two cases:

– p does not include the edges in Rm. Then the same path also exists in m(s), so the

order is trivially preserved.

– p include both edges in Rm ¼ ffa; bg; fc; dgg. Assume w.l.o.g. that p is defined

as p ¼ ðu; v; . . .; a; b; . . .; c; d; . . .; x; yÞ. Then consider in m(s) the path

q ¼ ðu; v; . . .; a; c; . . .; b; d; . . .; x; yÞ, where the nodes between a and d are

reversed due to the application of the move. Over q, u 	q v 	q x 	q y.

The case where p includes only one of the edges in Rm is excluded by the hypothesis

that fu; vg, fx; yg lie in the same connected component of EsnRm. Then the claim

follows. h

We can now show that, if we restrict ourselves to nested moves, as in Fig. 3, the

following result holds:

Theorem 2 Given a set M of legal moves of the type relocate, exchange,
relocate-pair, exchange-pairs, 2-opt with no edge overlap over a

well-formed solution s, if all pairs mi;mj of 2-opt moves are non-intertwined, then

the set is independent.

Proof We need to show that the solution obtained after applying all the moves in M

does not contain subtours. To do so, consider any sequence of moves in M, in any

order. The first move of the sequence m1 can be applied to s, and m1ðsÞ is still well-
formed, by hypothesis, thus no subtour exists. Moreover, by Lemmas 1–2 the rel-

ative order of any two edges affected by any other 2-opt move mk with k [1 is

preserved (since all 2-opt are pairwise nested in s), so all pairwise non-intertwined

Fig. 4 Applying intertwined moves on a solution s (left) does not guarantee the absence of subtours
(right). In this example, two intertwined moves create a disconnected subtour (the four nodes in the
middle), although both of them are legal if applied singularly

Exploiting sets of independent...

123

2-opt moves are still so.

Let mn be the n-th move in the sequence, and

let sn�1 denote the solution obtained after the application of the first n � 1 moves.

By inductive assumption, sn�1 does not contain subtours, the relative order of any

two edges affected by any 2-opt move mk with k[n � 1 is preserved, and all

pairs of 2-opt moves that were non-intertwined on s, are still so in sn�1. Then:

– If the n-th move is not a 2-opt, it can be legally applied since the edges

affected by mn are, by hypothesis, non-overlapping with all the other moves in

M, so the edges in Rmn
still belong to sn�1, and those in Imn

do not. The solution

sn does not contain subtours. By applying Lemma 1, the order of any two edges

not affected by mn is preserved and all pairwise non-intertwined 2-opt moves

are still so.

– If on the contrary the n-th move is a 2-opt, it can be applied without

introducing subtours, since the relative order of the edges in Rmn
is preserved in

sn�1 by the inductive assumption. We must now show that the order is preserved

also in sn. Consider any 2-opt move mk with k[n þ 1. By the inductive

assumption, mn and mk are still non-intertwined in sn�1 so the move mn

preserves the order of the two edges in Rmk
by Lemma 2. By applying the same

lemma, all non-intertwined moves are still so in sn.

The claim follows by induction. h

Extension to 2-opt
 moves

The classes of moves that can be combined can be further extended to include the

2-opt* operator.

Proposition 7 Given a well-formed solution s, a 2-opt* move m over s, defined as

Rm ¼ ffu; vg; fy; zgg � Es and Im ¼ ffu; yg; fv; zgg 6� Es, with fu; vg and fy; zg
belonging to two different tours (routes), is legal.

Proof Let us consider only the subset of Es that contains the two tours with the

nodes u, v and y, z, respectively. Cutting the edges Rm ¼ ffu; vg; fy; zgg creates a

tree with the depot as the root node, and four linear branches with the nodes

u, v, y, z as leaves. Inserting back in the solution the edges Im ¼ ffu; yg; fv; zgg
reestablishes the degree condition and reconnects the dangling branches, thus

obtaining two tours, connected by the depot, which contain the nodes u, y and v, z,

respectively. The solution is well-formed. h

The additional assumption here is that the edges in Rm must be in two different

routes. To safely combine them, then, it is sufficient to ensure that no route is

affected by more than one 2-opt*. Concerning the interaction with 2-opt moves,

similar steps to what is shown in the previous subsection can be followed.

Definition 6 Given a 2-opt move mi ¼ 2� optðfui; vig; fyi; zigÞ and a 2-opt

move mj ¼ 2� opt
ðfuj; vjg; fyj; zjgÞ with fui; vig; fyi; zig; fuj; vjg belonging to the

same route of a solution s, and fyj; zjgÞ belonging to a different one, let �pi be the set

T. Bianconcini et al.

123

of nodes in the simple path that connects vi to yi not passing through the depot. Two

cases can occur:

– if fuj; vjg � �pi, we say that mj is nested into mi;

– if fuj; vjg 6� �pi, we say that mi and mj are disjoint.

Lemma 3 Given a well-formed solution s, a legal 2-opt* move m preserves the

relative order of any pair of edges fu; vg, fx; yg in the same tour in s, if there is a

tour in m(s) that still contains them both.

Proof Consider the path p ¼ ðu; v; . . .; x; yÞ that induces the ordering

u 	p v 	p x 	p y. Let m be a legal 2-opt* move. The set Rm consists of two

edges, belonging to different routes. If fu; vg, fx; yg still belong to the same tour in

m(s), then p does not include the edge in Rm – otherwise they would be in two

different routes. This means that p also exists in m(s), and the order is preserved. h

Theorem 3 Given a set M of non-overlapping legal moves over a well-formed

solution s, if:

– all pairs mi;mj 2 M of 2-opt moves are non-intertwined (either one is nested

in the other, or they are disjoint).

– for each route in s, there can be at most one 2-opt* affecting any edge of that

route, and it must be disjoint from all the 2-opt moves over that route.

then the set is independent.

Proof We need to show that the solution obtained after applying all the moves in

M does not contain subtours.

An induction proof that follows the same idea used in Theorem 2 can be used.

For sake of readability, we will omit the details. To prove the thesis, it is sufficient

to guarantee, applying Lemmas 1, 2 and 3, that at each step of the induction:

– the relative order of any two edges affected by any 2-opt is preserved

– all pairwise non-intertwined 2-opt moves are still so

– for any 2-opt* move m 2 M, the edges Rm are still in different routes

– all pairs of 2-opt* and 2-opt moves are still disjoint. h

References

Boschetti M, Maniezzo V (2015) A set covering based matheuristic for a real-world city logistics

problem. Int Trans Oper Res 22:169–196

Bosco A, Laganà D, Musmanno R, Vocaturo F (2014) A matheuristic algorithm for the mixed capacitated

general routing problem. Networks 64(4):262–281

Bräysy O, Gendreau M (2005) Vehicle routing problem with time windows, part i: route construction and

local search algorithms. Trans Sci 39(1):104–118

Congram RK, Potts CN, van de Velde SL (2002) An iterated dynasearch algorithm for the single-machine

total weighted tardiness scheduling problem. INFORMS J Comput 14(1):52–67

Corman F, Voß S, Negenborn RR (eds) (2015) An ant colony-based matheuristic approach for solving a

class of vehicle routing problems. Springer International Publishing, Cham

Exploiting sets of independent...

123

Dayarian I, Crainic TG, Gendreau M, Rei W (2016) An adaptive large neighborhood search heuristic for a

multi-period vehicle routing problem. Transp Res Part E: Logist Transp Rev 95:95–123

De Franceschi R, Fischetti M, Toth P (2006) A new ILP-based refinement heuristic for vehicle routing

problems. Math Program 105(2–3):471–499

Ergun Ö, Orlin JB, Steele-Feldman A (2006) Creating very large scale neighborhoods out of smaller ones

by compounding moves. J Heuristics 12(1):115–140

Foster BA, Ryan DM (1976) An integer programming approach to the vehicle scheduling problem. J Oper

Res Soc 27(2):367–384

Gurobi Optimization Inc (2016) Gurobi optimizer reference manual. http://www.gurobi.com. Accessed

24 Mar 2017

Kelly JP, Xu J (1999) A set-partitioning-based heuristic for the vehicle routing problem. INFORMS J

Comput 11(2):161–172

Koç Ç, Bektaş T, Jabali O, Laporte G (2015) A hybrid evolutionary algorithm for heterogeneous fleet

vehicle routing problems with time windows. Comput Oper Res 64:11–27

Mancini S (2016) A real-life multi depot multi period vehicle routing problem with a heterogeneous fleet:

Formulation and adaptive large neighborhood search based matheuristic. Transportation Research

Part C: Emerging Technologies, pp. 100–112

Nemhauser GL, Wolsey LA (1988) Integer programming and combinatorial optimization. Wiley, New

York

Pillac V, Guéret C, Medaglia AL (2013) A parallel matheuristic for the technician routing and scheduling

problem. Optim Lett 7(7):1525–1535

Potts CN, van de Velde SL (1995) Dynasearch-Iterative local improvement by dynamic programming.

Part I. The traveling salesman problem. Tech. rep., University of Twente

Riise A, Burke EK (2014) On parallel local search for permutations. J Oper Res Soc 66(5):822–831

Rochat Y, Taillard ÉD (1995) Probabilistic diversification and intensification in local search for vehicle

routing. J Heuristics 1(1):147–167

Rousseau LM, Gendreau M, Pesant G (2002) Using constraint-based operators to solve the vehicle

routing problem with time windows. J Heuristics 8(1):43–58

Schmid V, Doerner KF, Hartl RF, Savelsbergh MW, Stoecher W (2009) A hybrid solution approach for

ready-mixed concrete delivery. Transp Sci 43(1):70–85

Subramanian A, Uchoa E, Ochi LS (2013) A hybrid algorithm for a class of vehicle routing problems.

Comput Oper Res 40(10):2519–2531

Toth P, Vigo D (2014) Vehicle routing: problems, methods, and applications, second, edition edn. SIAM/

MOS, Philadelphia

Uchoa E, Pecin D, Pessoa A, Poggi M, Vidal T, Subramanian A (2017) New benchmark instances for the

capacitated vehicle routing problem. Eur J Oper Res 257(3):845–858

Vidal T, Crainic TG, Gendreau M, Prins C (2014) A unified solution framework for multi-attribute

vehicle routing problems. Eur J Oper Res 234(3):658–673

T. Bianconcini et al.

123

http://www.gurobi.com

	Exploiting sets of independent moves in VRP
	Abstract
	Introduction
	Review of the literature
	Independent moves for VRP problems
	The proposed algorithm
	Neighborhood exploration
	Destroy and repair
	MIP formulation for the selection of the best independent set of moves
	Set-covering refinement phase

	Numerical results
	Implementation details
	Results
	Experiments with Ergun et al. (2006) dataset
	Experiments with the ‘‘X’’ dataset by Uchoa et al. (2017)

	Conclusions
	Acknowledgements
	Appendix
	Extension to 2-opt moves
	Extension to 2-opt^* moves

	References

