2,577 research outputs found
Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways
It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers
DHODH modulates transcriptional elongation in the neural crest and melanoma
Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma1. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation
Recommended from our members
The impact of intolerance of uncertainty and cognitive behavioural instructions on safety learning
Background
Difficulty updating threat associations to safe associations has been observed in individuals who score high in self-reported Intolerance of Uncertainty (IU). Here we sought to determine whether an instruction based on fundamental principles of Cognitive Behavioural Therapy could promote safety learning in individuals with higher levels of IU, whilst controlling for self-reported trait anxiety (STICSA).
Methods
We measured skin conductance response, pupil dilation and expectancy ratings during an associative threat learning task in which participants either received a cognitive behavioural instruction or no instruction prior to threat extinction (n = 92).
Results
Analyses revealed that both self-reported IU and STICSA similarly predicted differences in skin conductance response. Only individuals with lower IU/STICSA in the cognitive behavioural instruction condition displayed successful safety learning via skin conductance response.
Conclusions
These initial results provide some insight into how simple cognitive behavioural instructions combined with exposure are applied differently in individuals with varying levels of self-reported anxiety. The results further our understanding of the role of basic cognitive behavioural principles and self-reported anxiety in safety learning
Elongase Reactions as Control Points in Long-Chain Polyunsaturated Fatty Acid Synthesis
Extent: 9p.Background: Δ6-Desaturase (Fads2) is widely regarded as rate-limiting in the conversion of dietary α-linolenic acid (18:3n-3; ALA) to the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (22:6n-3; DHA). However, increasing dietary ALA or the direct Fads2 product, stearidonic acid (18:4n-3; SDA), increases tissue levels of eicosapentaenoic acid (20:5n-3; EPA) and docosapentaenoic acid (22:5n-3; DPA), but not DHA. These observations suggest that one or more control points must exist beyond ALA metabolism by Fads2. One possible control point is a second reaction involving Fads2 itself, since this enzyme catalyses desaturation of 24:5n-3 to 24:6n-3, as well as ALA to SDA. However, metabolism of EPA and DPA both require elongation reactions. This study examined the activities of two elongase enzymes as well as the second reaction of Fads2 in order to concentrate on the metabolism of EPA to DHA. Methodology/Principal Findings: The substrate selectivities, competitive substrate interactions and dose response curves of the rat elongases, Elovl2 and Elovl5 were determined after expression of the enzymes in yeast. The competitive substrate interactions for rat Fads2 were also examined. Rat Elovl2 was active with C20 and C22 polyunsaturated fatty acids and this single enzyme catalysed the sequential elongation reactions of EPA→DPA→24:5n-3. The second reaction DPA→24:5n-3 appeared to be saturated at substrate concentrations not saturating for the first reaction EPA→DPA. ALA dose-dependently inhibited Fads2 conversion of 24:5n-3 to 24:6n-3. Conclusions: The competition between ALA and 24:5n-3 for Fads2 may explain the decrease in DHA levels observed after certain intakes of dietary ALA have been exceeded. In addition, the apparent saturation of the second Elovl2 reaction, DPA→24:5n-3, provides further explanations for the accumulation of DPA when ALA, SDA or EPA is provided in the diet. This study suggests that Elovl2 will be critical in understanding if DHA synthesis can be increased by dietary means.Melissa K. Gregory, Robert A. Gibson, Rebecca J. Cook-Johnson, Leslie G. Cleland and Michael J. Jame
Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host
Schmallenberg virus (SBV) is an emerging orthobunyavirus of ruminants associated with outbreaks of congenital malformations in aborted and stillborn animals. Since its discovery in November 2011, SBV has spread very rapidly to many European countries. Here, we developed molecular and serological tools, and an experimental in vivo model as a platform to study SBV pathogenesis, tropism and virus-host cell interactions. Using a synthetic biology approach, we developed a reverse genetics system for the rapid rescue and genetic manipulation of SBV. We showed that SBV has a wide tropism in cell culture and “synthetic” SBV replicates in vitro as efficiently as wild type virus. We developed an experimental mouse model to study SBV infection and showed that this virus replicates abundantly in neurons where it causes cerebral malacia and vacuolation of the cerebral cortex. These virus-induced acute lesions are useful in understanding the progression from vacuolation to porencephaly and extensive tissue destruction, often observed in aborted lambs and calves in naturally occurring Schmallenberg cases. Indeed, we detected high levels of SBV antigens in the neurons of the gray matter of brain and spinal cord of naturally affected lambs and calves, suggesting that muscular hypoplasia observed in SBV-infected lambs is mostly secondary to central nervous system damage. Finally, we investigated the molecular determinants of SBV virulence. Interestingly, we found a biological SBV clone that after passage in cell culture displays increased virulence in mice. We also found that a SBV deletion mutant of the non-structural NSs protein (SBVΔNSs) is less virulent in mice than wild type SBV. Attenuation of SBV virulence depends on the inability of SBVΔNSs to block IFN synthesis in virus infected cells. In conclusion, this work provides a useful experimental framework to study the biology and pathogenesis of SBV
Highly Unsaturated Fatty Acid Synthesis in Atlantic Salmon: Characterization of ELOVL5- and ELOVL2-like Elongases
Fish species vary in their capacity to biosynthesize the n-3 long-chain polyunsaturated fatty acids (LC-PUFA) eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids that are crucial to the health of higher vertebrates. The synthesis of LC-PUFA involves enzyme-mediated fatty acyl desaturation and elongation. Previously, a cDNA for an elongase, now termed elovl5a, had been cloned from Atlantic salmon. Here we report on the cloning of two new elongase cDNAs: a second elovl5b elongase, corresponding to a 294 aa protein, and an elovl2-like elongase, coding for a 287 aa protein, characterized for the first time in a non-mammalian vertebrate. Heterologous expression in yeast showed that the salmon Elovl5b elongated C18 and C20 PUFA, with low activity towards C22, while Elovl2 elongated C20 and C22 PUFA with lower activity towards C18 PUFA. All three transcripts showed predominant expression in the intestine and liver, followed by the brain. Elongase expression showed differential nutritional regulation. Levels of elovl5b and particularly of elovl2, but not of elovl5a, transcripts were significantly increased in liver of salmon fed vegetable oils (VO) compared to fish fed fish oil (FO). Intestinal expression showed a similar pattern. Phylogenetic comparisons indicate that, in contrast to salmon and zebrafish, Acanthopterygian fish species lack elovl2 which is consistent with their neglible ability to biosynthesise LC-PUFA and to adapt to VO dietary inclusion, compared to predominantly freshwater salmonids. Thus the presence of elovl2 in salmon explains the ability of this species to biosynthesise LC-HUFA and may provide a biotechnological tool to produce enhanced levels of LC-PUFA, particularly DHA, in transgenic organisms
High Seroprevalence of Rift Valley Fever and Evidence for Endemic Circulation in Mbeya Region, Tanzania, in a Cross-Sectional Study
We describe a high seropositivity rate for Rift Valley fever virus, in up to 29.3% of tested individuals from the shore of Lake Malawi in southwestern Tanzania, and much lower rates from areas distant to the lake. Rift Valley fever disease or outbreaks have not been observed there in the past, which suggests that the virus is circulating under locally favorable conditions and is either a non-pathogenic strain, or that occasional occurrence of disease is missed. We were able to identify a low socio-economic status and cattle ownership as possible socio-economic risk factors for an individual to be seropositive. Environmental risk factors associated with seropositivity include dense vegetation, and ambient land surface temperatures which may be important for breeding success of the mosquitoes which transmit Rift Valley fever, and for efficient multiplication of the virus in the mosquito. Low elevation of the home, and proximity to Lake Malawi probably lead to abundant surface water collections, which serve as breeding places for mosquitoes. These findings will inform patient care in the areas close to Lake Malawi, and may help to design models which predict low-level virus circulation
Recommended from our members
Erratum: Author Correction: Identification of genes required for eye development by high-throughput screening of mouse knockouts.
[This corrects the article DOI: 10.1038/s42003-018-0226-0.]
- …