51 research outputs found

    Effect of bevacizumab in older patients with metastatic colorectal cancer: pooled analysis of four randomized studies

    Get PDF
    Background: Bevacizumab is frequently combined with 5-fluorouracil-based chemotherapy for patients with metastatic colorectal cancer (mCRC). The relative benefit of bevacizumab in older patients has not been widely studied and is of interest. Patients and methods: This retrospective analysis used data from three first-line randomized controlled studies and one second-line randomized controlled study of bevacizumab plus chemotherapy in medically fit (Eastern Cooperative Oncology Group performance status 0 or 1) patients with mCRC. Overall survival (OS) and on-treatment progression-free survival (PFS) were assessed in patients aged greater than 65, greater than or equal to 65, and greater than or equal to 70 years. Results were compared using unstratified hazard ratios (HRs). Grade 3-5 adverse events were also assessed. Results: Bevacizumab statistically significantly improved PFS [HR 0.58; 95% confidence interval (CI) 0.49-0.68] and OS (HR 0.85; 95% CI 0.74-0.97) in patients aged greater than or equal to 65 years; patients aged greater than or equal to 70 years had similar improvements. Benefits were consistent across the studies, irrespective of setting, bevacizumab dose, or chemotherapy regimen. Increases in thromboembolic events were observed in patients aged greater than or equal to 65 and greater than or equal to 70 years in the bevacizumab group compared with the control group, mainly as a result of increases in arterial thromboembolic events. No other substantial age-related increases in grade 3-5 adverse events were observed. Conclusions: In medically fit older patients, bevacizumab provides similar PFS and OS benefits as in younger patients

    Expanded access study of patients with advanced basal cell carcinoma treated with the Hedgehog pathway inhibitor, vismodegib

    Get PDF
    Background: Vismodegib, a first-in-class Hedgehog pathway inhibitor, was US Food and Drug Administration (FDA) approved for advanced basal cell carcinomas (BCCs) based on a single, nonrandomized, phase-II trial. Consequently, additional clinical data are critical to confirm the efficacy and safety of vismodegib

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    Metabolic phenotype of methylmalonic acidemia in mice and humans: the role of skeletal muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in methylmalonyl-CoA mutase cause methylmalonic acidemia, a common organic aciduria. Current treatment regimens rely on dietary management and, in severely affected patients, liver or combined liver-kidney transplantation. For undetermined reasons, transplantation does not correct the biochemical phenotype.</p> <p>Methods</p> <p>To study the metabolic disturbances seen in this disorder, we have created a murine model with a null allele at the methylmalonyl-CoA mutase locus and correlated the results observed in the knock-out mice to patient data. To gain insight into the origin and magnitude of methylmalonic acid (MMA) production in humans with methylmalonyl-CoA mutase deficiency, we evaluated two methylmalonic acidemia patients who had received different variants of combined liver-kidney transplants, one with a complete liver replacement-kidney transplant and the other with an auxiliary liver graft-kidney transplant, and compared their metabolite production to four untransplanted patients with intact renal function.</p> <p>Results</p> <p>Enzymatic, Western and Northern analyses demonstrated that the targeted allele was null and correctable by lentiviral complementation. Metabolite studies defined the magnitude and tempo of plasma MMA concentrations in the mice. Before a fatal metabolic crisis developed in the first 24–48 hours, the methylmalonic acid content per gram wet-weight was massively elevated in the skeletal muscle as well as the kidneys, liver and brain. Near the end of life, extreme elevations in tissue MMA were present primarily in the liver. The transplant patients studied when well and on dietary therapy, displayed massive elevations of MMA in the plasma and urine, comparable to the levels seen in the untransplanted patients with similar enzymatic phenotypes and dietary regimens.</p> <p>Conclusion</p> <p>The combined observations from the murine metabolite studies and patient investigations indicate that during homeostasis, a large portion of circulating MMA has an extra-heptorenal origin and likely derives from the skeletal muscle. Our studies suggest that modulating skeletal muscle metabolism may represent a strategy to increase metabolic capacity in methylmalonic acidemia as well as other organic acidurias. This mouse model will be useful for further investigations exploring disease mechanisms and therapeutic interventions in methylmalonic acidemia, a devastating disorder of intermediary metabolism.</p

    Inflammatory mediators in breast cancer: Coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inflammatory chemokines CCL2 (MCP-1) & CCL5 (RANTES) and the inflammatory cytokines TNFα & IL-1β were shown to contribute to breast cancer development and metastasis. In this study, we wished to determine whether there are associations between these factors along stages of breast cancer progression, and to identify the possible implications of these factors to disease course.</p> <p>Methods</p> <p>The expression of CCL2, CCL5, TNFα and IL-1β was determined by immunohistochemistry in patients diagnosed with: (1) Benign breast disorders (=healthy individuals); (2) Ductal Carcinoma <it>In Situ </it>(DCIS); (3) Invasive Ducal Carcinoma without relapse (IDC-no-relapse); (4) IDC-with-relapse. Based on the results obtained, breast tumor cells were stimulated by the inflammatory cytokines, and epithelial-to-mesenchymal transition (EMT) was determined by flow cytometry, confocal analyses and adhesion, migration and invasion experiments.</p> <p>Results</p> <p>CCL2, CCL5, TNFα and IL-1β were expressed at very low incidence in normal breast epithelial cells, but their incidence was significantly elevated in tumor cells of the three groups of cancer patients. Significant associations were found between CCL2 & CCL5 and TNFα & IL-1β in the tumor cells in DCIS and IDC-no-relapse patients. In the IDC-with-relapse group, the expression of CCL2 & CCL5 was accompanied by further elevated incidence of TNFα & IL-1β expression. These results suggest progression-related roles for TNFα and IL-1β in breast cancer, as indeed indicated by the following: (1) Tumors of the IDC-with-relapse group had significantly higher persistence of TNFα and IL-1β compared to tumors of DCIS or IDC-no-relapse; (2) Continuous stimulation of the tumor cells by TNFα (and to some extent IL-1β) has led to EMT in the tumor cells; (3) Combined analyses with relevant clinical parameters suggested that IL-1β acts jointly with other pro-malignancy factors to promote disease relapse.</p> <p>Conclusions</p> <p>Our findings suggest that the coordinated expression of CCL2 & CCL5 and TNFα & IL-1β may be important for disease course, and that TNFα & IL-1β may promote disease relapse. Further <it>in vitro </it>and <it>in vivo </it>studies are needed for determination of the joint powers of the four factors in breast cancer, as well as analyses of their combined targeting in breast cancer.</p

    stairs and fire

    Get PDF

    Operative expectations for Mohs surgery in patients with chronic lymphocytic leukemia: A multicenter retrospective cohort studyCapsule Summary

    No full text
    Background: Patients with chronic lymphocytic leukemia (CLL) are immunocompromised and have both a higher incidence of and more aggressive skin cancers, often requiring treatment with Mohs micrographic surgery. Objective: Characterize operative expectations for Mohs surgery in patients with CLL. Methods: Multicenter retrospective cohort study. Results: One hundred fifty-nine tumors from 99 patients with CLL were matched 1:4 with controls. Cases had higher odds for requiring at least 3 stages during Mohs surgery compared to controls (odds ratio = 1.91; 95% CI [1.21-3.02]; P = .01). The mean number of Mohs stages in cases was 1.97 (±0.92) compared with 1.67 (±0.87) in controls (P = .0001). A regression analysis showed that cases had larger postoperative tumor areas (cm2) versus controls (mean = 5.57 vs 4.47; estimate difference Δβ = 1.10 cm2; 95% CI [0.18-2.03]; P = .02). In logistic regression, cases were twice as likely to receive a flap repair compared to controls (odds ratio = 2.45; 95% CI [1.58-3.8]). Limitations: Retrospective cohort study and lack of histologic subtyping of tumors. Conclusion: Patients with CLL require more Mohs stages to attain clear surgical margins, have larger postoperative defect areas, and require more advanced repair techniques compared to a control population without CLL. These findings are essential for preoperative planning and patient counseling and further support the use of Mohs surgery in patients with CLL

    Expanded access study of patients with advanced basal cell carcinoma treated with the Hedgehog pathway inhibitor, vismodegib

    No full text
    Background: Vismodegib, a first-in-class Hedgehog pathway inhibitor, was US Food and Drug Administration (FDA) approved for advanced basal cell carcinomas (BCCs) based on a single, nonrandomized, phase-II trial. Consequently, additional clinical data are critical to confirm the efficacy and safety of vismodegib

    Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development

    No full text
    Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3ɛ proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3ζ-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development
    corecore