137 research outputs found

    The Photonic Lantern

    Get PDF
    Photonic lanterns are made by adiabatically merging several single-mode cores into one multimode core. They provide low-loss interfaces between single-mode and multimode systems where the precise optical mapping between cores and individual modes is unimportant.Comment: 45 pages; article unchanged, accepted for publication in Advances in Optics and Photonic

    Efficient injection from large telescopes into single-mode fibres: Enabling the era of ultra-precision astronomy

    Get PDF
    Photonic technologies offer numerous advantages for astronomical instruments such as spectrographs and interferometers owing to their small footprints and diverse range of functionalities. Operating at the diffraction-limit, it is notoriously difficult to efficiently couple such devices directly with large telescopes. We demonstrate that with careful control of both the non-ideal pupil geometry of a telescope and residual wavefront errors, efficient coupling with single-mode devices can indeed be realised. A fibre injection was built within the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. Light was coupled into a single-mode fibre operating in the near-IR (J-H bands) which was downstream of the extreme adaptive optics system and the pupil apodising optics. A coupling efficiency of 86% of the theoretical maximum limit was achieved at 1550 nm for a diffraction-limited beam in the laboratory, and was linearly correlated with Strehl ratio. The coupling efficiency was constant to within <30% in the range 1250-1600 nm. Preliminary on-sky data with a Strehl ratio of 60% in the H-band produced a coupling efficiency into a single-mode fibre of ~50%, consistent with expectations. The coupling was >40% for 84% of the time and >50% for 41% of the time. The laboratory results allow us to forecast that extreme adaptive optics levels of correction (Strehl ratio >90% in H-band) would allow coupling of >67% (of the order of coupling to multimode fibres currently). For Strehl ratios <20%, few-port photonic lanterns become a superior choice but the signal-to-noise must be considered. These results illustrate a clear path to efficient on-sky coupling into a single-mode fibre, which could be used to realise modal-noise-free radial velocity machines, very-long-baseline optical/near-IR interferometers and/or simply exploit photonic technologies in future instrument design.Comment: 15 pages, 16 figures, 1 table, published in A&

    Characterization of hexabundles: Initial results

    Full text link
    New multi-core imaging fibre bundles -- hexabundles -- being developed at the University of Sydney will provide simultaneous integral field spectroscopy for hundreds of celestial sources across a wide angular field. These are a natural progression from the use of single fibres in existing galaxy surveys. Hexabundles will allow us to address fundamental questions in astronomy without the biases introduced by a fixed entrance aperture. We have begun to consider instrument concepts that exploit hundreds of hexabundles over the widest possible field of view. To this end, we have compared the performance of a 61-core fully-fused hexabundle and 5 lightly-fused bundles with 7 cores each. All fibres in the bundles have 100 micron cores. In the fully-fused bundle, the cores are distorted from a circular shape in order to achieve a higher fill fraction. The lightly-fused bundles have circular cores and five different cladding thicknesses which affect the fill fraction. We compare the optical performance of all 6 bundles and find that the advantage of smaller interstitial holes (higher fill fraction) is outweighed by the increase in modal coupling, cross-talk and the poor optical performance caused by the deformation of the fibre cores. Uniformly high throughput and low cross-talk are essential for imaging faint astronomical targets with sufficient resolution to disentangle the dynamical structure. Devices already under development will have between 100 and 200 lightly-fused cores, although larger formats are feasible. The light-weight packaging of hexabundles is sufficiently flexible to allow existing robotic positioners to make use of them.Comment: Accepted for publication in MNRAS. See also a complimentary paper on the development of hexabundles - Bland-Hawthorn et al. 2011, Optics Express, vol. 19, p. 2649 (http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-3-2649

    Nineteen-port photonic lantern with multimode delivery fiber

    Get PDF
    We demonstrate efficient multimode (MM) to single-mode (SM) conversion in a 19-port photonic lantern with a 50 μm core MM delivery fiber. The photonic lantern can be used within the field of astrophotonics for coupling MM starlight to an ensemble of SM fibers in order to perform fiber-Bragg-grating-based spectral filtering. An MM delivery fiber spliced to the photonic lantern offers the advantage that the delivery fiber guides the light from the focal plane of the telescope to the splitter. Therefore, it is no longer necessary to have the splitter mounted directly in the focal plane of the telescope. The coupling loss from a 50 μm core MM fiber to an ensemble of 19 SM fibers and back to a 50 μm core MM fiber is below 1.1 dB.3 page(s

    Air-structured optical fiber drawn from a 3D-printed preform

    Full text link
    © 2015 Optical Society of America. A structured optical fiber is drawn from a 3D-printed structured preform. Preforms containing a single ring of holes around the core are fabricated using filament made from a modified butadiene polymer. More broadly, 3D printers capable of processing soft glasses, silica, and other materials are likely to come on line in the not-so-distant future. 3D printing of optical preforms signals a new milestone in optical fiber manufacture

    Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide

    Full text link
    We report on the fabrication and characterization of composite multimode waveguide structures that consist of a stack of single-mode waveguides fabricated by ultrafast laser inscription. We explore 2 types of composite structures; those that consist of overlapping single-mode waveguides which offer the maximum effective index contrast and non overlapped structures which support multiple modes via strong evanescent coupling. We demonstrate that both types of waveguides have negligible propagation losses (to within experimental uncertainty) for light injected with focal ratios >8, which corresponds to the cutoff of the waveguides. We also show that right below cutoff, there is a narrow region where the injected focal ratio is preserved (to within experimental uncertainty) at the output. Finally, we outline the major application of these highly efficient waveguides; in a device that is used to reformat the light in the focal plane of a telescope to a slit, in order to feed a diffraction-limited spectrograph.Comment: 15 pages, 11 figures, accepted to Optics Expres

    Silica aerogel core waveguide

    Get PDF

    Suppression of the near-infrared OH night sky lines with fibre Bragg gratings - first results

    Get PDF
    The background noise between 1 and 1.8 microns in ground-based instruments is dominated by atmospheric emission from hydroxyl molecules. We have built and commissioned a new instrument, GNOSIS, which suppresses 103 OH doublets between 1.47 - 1.7 microns by a factor of ~1000 with a resolving power of ~10,000. We present the first results from the commissioning of GNOSIS using the IRIS2 spectrograph at the AAT. The combined throughput of the GNOSIS fore-optics, grating unit and relay optics is ~36 per cent, but this could be improved to ~46 per cent with a more optimal design. We measure strong suppression of the OH lines, confirming that OH suppression with fibre Bragg gratings will be a powerful technology for low resolution spectroscopy. The integrated OH suppressed background between 1.5 and 1.7 microns is reduced by a factor of 9 compared to a control spectrum using the same system without suppression. The potential of low resolution OH suppressed spectroscopy is illustrated with example observations. The GNOSIS background is dominated by detector dark current below 1.67 microns and by thermal emission above 1.67 microns. After subtracting these we detect an unidentified residual interline component of ~ 860 +/ 210 ph/s/m^2/micron/arcsec^2. This component is equally bright in the suppressed and control spectra. We have investigated the possible source of the interline component, but were unable to discriminate between a possible instrumental artifact and intrinsic atmospheric emission. Resolving the source of this emission is crucial for the design of fully optimised OH suppression spectrographs. The next generation OH suppression spectrograph will be focussed on resolving the source of the interline component, taking advantage of better optimisation for a FBG feed. We quantify the necessary improvements for an optimal OH suppressing fibre spectrograph design.Comment: Accepted for publication in MNRAS. 15 pages, 18 figure

    GNOSIS: the first instrument to use fibre Bragg gratings for OH suppression

    Full text link
    GNOSIS is a prototype astrophotonic instrument that utilizes OH suppression fibres consisting of fibre Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47-1.7 microns. GNOSIS was commissioned at the 3.9-meter Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibres, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput and excellent suppression of the skylines by the OH suppression fibres, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS and IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise-dominated. OH suppression fibres could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a clear reduction in the interline background and the corresponding increasing in sensitivity is demonstrated optimized OH suppression fibres paired with a fibre-fed spectrograph will at least provide a real benefits at low resolving powers.Comment: 15 pages, 13 figures, accepted to A

    Tapered fibers embedded in silica aerogel

    Get PDF
    corecore