233 research outputs found

    Book reviews

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42841/1/10734_2004_Article_BF00129796.pd

    Characterization of Contaminants from a Sanitized Milk Processing Plant

    Get PDF
    Milk processing lines offer a wide variety of microenvironments where a diversity of microorganisms can proliferate. We sampled crevices and junctions where, due to deficient reach by typical sanitizing procedures, bacteria can survive and establish biofilms. The sampling sites were the holding cell, cold storage tank, pasteurizer and storage tank - transfer pump junction. The culturable bacteria that were isolated after the sanitation procedure were predominantly Pseudomonas spp., Serratia spp, Staphylococcus sciuri and Stenotrophomonas maltophilia. We assayed several phenotypic characteristics such as the ability to secrete enzymes and siderophores, as well as the capacity of the strains to form biofilms that might contribute to their survival in a mixed species environment. The Pseudomonas spp. isolates were found to either produce proteases or lecithinases at high levels. Interestingly, protease production showed an inverse correlation with siderophore production. Furthermore, all of the Serratia spp. isolates were strong biofilm formers and spoilage enzymes producers. The organisms identified were not mere contaminants, but also producers of proteins with the potential to lower the quality and shelf-life of milk. In addition, we found that a considerable number of the Serratia and Pseudomonas spp. isolated from the pasteurizer were capable of secreting compounds with antimicrobial properties

    IL-10R Blockade during Chronic Schistosomiasis Mansoni Results in the Loss of B Cells from the Liver and the Development of Severe Pulmonary Disease

    Get PDF
    In schistosomiasis patients, parasite eggs trapped in hepatic sinusoids become foci for CD4+ T cell-orchestrated granulomatous cellular infiltrates. Since the immune response is unable to clear the infection, the liver is subjected to ongoing cycles of focal inflammation and healing that lead to vascular obstruction and tissue fibrosis. This is mitigated by regulatory mechanisms that develop over time and which minimize the inflammatory response to newly deposited eggs. Exploring changes in the hepatic inflammatory infiltrate over time in infected mice, we found an accumulation of schistosome egg antigen-specific IgG1-secreting plasma cells during chronic infection. This population was significantly diminished by blockade of the receptor for IL-10, a cytokine implicated in plasma cell development. Strikingly, IL-10R blockade precipitated the development of portal hypertension and the accumulation of parasite eggs in the lungs and heart. This did not reflect more aggressive Th2 cell responsiveness, increased hepatic fibrosis, or the emergence of Th1 or Th17 responses. Rather, a role for antibody in the prevention of severe disease was suggested by the finding that pulmonary involvement was also apparent in mice unable to secrete class switched antibody. A major effect of anti-IL-10R treatment was the loss of a myeloid population that stained positively for surface IgG1, and which exhibited characteristics of regulatory/anti-inflammatory macrophages. This finding suggests that antibody may promote protective effects within the liver through local interactions with macrophages. In summary, our data describe a role for IL-10-dependent B cell responses in the regulation of tissue damage during a chronic helminth infection

    Influence of aerobic fitness on gastrointestinal barrier integrity and microbial translocation following a fixed-intensity military exertional heat stress test

    Get PDF
    Purpose: Exertional-heat stress adversely disrupts gastrointestinal (GI) barrier integrity, whereby subsequent microbial translocation (MT) can result in potentially serious health consequences. To date, the influence of aerobic fitness on GI barrier integrity and MT following exertional-heat stress is poorly characterised. Method: Ten untrained (UT; VO2max = 45 ± 3 ml·kg−1·min−1) and ten highly trained (HT; VO2max = 64 ± 4 ml·kg−1·min−1) males completed an ecologically valid (military) 80-min fixed-intensity exertional-heat stress test (EHST). Venous blood was drawn immediately pre- and post-EHST. GI barrier integrity was assessed using the serum dual-sugar absorption test (DSAT) and plasma Intestinal Fatty-Acid Binding Protein (I-FABP). MT was assessed using plasma Bacteroides/total 16S DNA. Results: UT experienced greater thermoregulatory, cardiovascular and perceptual strain (p < 0.05) than HT during the EHST. Serum DSAT responses were similar between the two groups (p = 0.59), although Δ I-FABP was greater (p = 0.04) in the UT (1.14 ± 1.36 ng·ml−1) versus HT (0.20 ± 0.29 ng·ml−1) group. Bacteroides/Total 16S DNA ratio was unchanged (Δ; -0.04 ± 0.18) following the EHST in the HT group, but increased (Δ; 0.19 ± 0.25) in the UT group (p = 0.05). Weekly aerobic training hours had a weak, negative correlation with Δ I-FABP and Bacteroides/total 16S DNA responses. Conclusion: When exercising at the same absolute workload, UT individuals are more susceptible to small intestinal epithelial injury and MT than HT individuals. These responses appear partially attributable to greater thermoregulatory, cardiovascular, and perceptual strain
    corecore