6 research outputs found

    Screening of per- and polyfluoroalkyl substances (PFAS) in sediment and water close to paper industries

    No full text
    Per- and polyfluoroalkyl substances (PFAS) is a large group of anthropogenic compounds that is widely used, for example to manufacture grease- and water-repellent paper. Several PFAS have been found to pose a risk to the environment and humans due to their persistency, mobility, toxicity and bioaccumulative potential. Paper production in Sweden covers widely different products such as cardboard, liquid cardboard, writing paper, sack paper, hygiene paper (tissue), etc. In addition, there are also numerous closed paper industries. Current and historical use of PFAS in paper industries in Sweden and consequent emissions to the environment are not known. The purpose of this study was to assess if paper industries could be an important point source for PFAS in the environment by analysis of PFAS in sediment and water taken nearby paper industries. In total, 60 sediment samples from 13 sites in Sweden sampled during the time period 2015-2022, and eight surface water samples from three sites taken in 2021, were included in the study. A total of 68 non-polymer PFAS and extractable organofluorine (EOF) was targeted. The results from the screening study shows a wide range of the sum target PFAS-68, between below limit of detection (LOD) to 1181 ng/g dry weight (d.w.) in sediments close to paper industries in Sweden. The number and type of PFAS detected also varied. The PFAS-classes found in highest concentration in surface sediments were polyfluoroalkyl phosphate diesters (diPAP) (maximum 819 ng/g d.w.), fluorooctanesulfonamidoacetic acid (FOSAA) (maximum 137 ng/g d.w.), and N-ethyl perfluorooctane sulfonamido ethyl phosphate diester (diSAmPAP) (maximum 134 ng/g d.w.). DiSAmPAP was only semi-quantified due to poor separation of structural isomers and interferences from the sediment matrix. A general increase in concentrations with increasing sediment depth could be seen for the contaminated sites, and the maximum concentration in sediments of different depths reached 1084 ng/g d.w. for diPAP, 65 ng/g d.w. for FOSAA, and 682 ng/g d.w. for diSAmPAP. The commonly measured classes of perfluoroalkyl acids (PFCA) and perfluoroalkyl sulfonic acids (PFSA) reached a maximum of 6 and 7 ng/g d.w. in surface sediments, and 11 and 6 ng/g d.w. in sediment cores, respectively. The EOF levels followed the same trend as target PFAS concentrations, with a few exceptions, and ranged between <LOD to 1301 ng/g d.w.. Surface water from three sites showed detectable concentrations of PFCA, PFSA och FTSA up to 0.05 ng/mL, but the occurrence could not be connected to the paper industries. Based on the target results of surface sediments, five out of the 13 sites can be classified as low contaminated (sum target PFAS-68 <20 ng/g d.w.) and the remaining eight sites are clearly affected by a PFAS point source.Per- och polyfluoralkylsubstanser (PFAS) är en stor grupp antropogena föreningar med bred användning, till exempel vid tillverkning av fett- och vattenavvisande papper. Flera PFAS har visat sig utgöra en risk för miljön och människor på grund av deras persistens, rörlighet, toxicitet och bioackumulerande egenskaper. Pappersproduktionen i Sverige omfattar olika typer av produkter såsom kartong, flytande kartong, skrivpapper, säckpapper, hygienpapper, etcetera. Nuvarande och historisk användning av PFAS i svensk pappersindustri kopplat till utsläpp till miljön är inte känd. Syftet med denna studie var att bedöma om pappersindustrier kan vara en viktig punktkälla för PFAS i miljön genom analys av PFAS i sediment och vatten i närheten av pappersindustrier. Totalt ingick 60 sedimentprover från 13 platser i Sverige provtagna under tidsperioden 2015–2022, och åtta ytvattenprover från tre platser tagna 2021. Analysen omfattade totalt 68 PFAS (icke-polymerer) och extraherbart organiskt fluor (EOF). Resultaten visar ett stort koncentrationsområde i sediment nära pappersindustrier i Sverige, från under detektionsgränsen (LOD) till 1181 ng/g torrvikt. Antalet och typen av detekterade PFAS varierade också. De PFAS-klasser som hittades i högst koncentration i ytsediment var polyfluoralkylfosfatdiestrar (diPAP, max 819 ng/g), fluoroktansulfonamidättiksyra (FOSAA, max 137 ng/g) och ämnet N-etylperfluoroktansulfonamidfosfatdiester (diSAmPAP, max 134 ng/g d). Koncentrationerna för diSAmPAP är semi-kvantifierade då matris och isomerer störde kvantifieringen. En generell ökning av koncentrationerna med ökande sedimentdjup kunde ses och den maximala koncentrationen i sediment från olika djup nådde 1084 ng/g för diPAP, 65 ng/g för FOSAA och 682 ng/g för diSAmPAP. De klasserna som vanligtvis mäts i undersökningar, PFCA och PFSA, nådde maximalt 6 och 7 ng/g i ytsediment, och 11 och 6 ng/g i sedimentkärnor. EOF följde samma trend som PFAS-koncentrationerna, med några få undantag, och varierade mellan <LOD till 1301 ng/g. Ytvatten från tre platser visade detekterbara koncentrationer av PFCA, PFSA och FTSA upp till 0,05 ng/ml, men kunde inte kopplas tillNATIONELL MILJÖÖVERVAKNING PÅ UPPDRAG AV NATURVÅRDSVERKETÄRENDENNUMMERAVTALSNUMMERPROGRAMOMRÅDEDELPROGRAMNV-06307-20219-20-008MiljögiftsamordningScreening3pappersindustrierna i denna studie. Baserat på PFAS-analysen av sediment är åtta av de 13 platserna tydligt påverkade av punktkälla och fem kan klassificeras som lågkontaminerade (summa PFAS-68 <20 ng/g) även om påverkan från närliggande industrier inte helt kan uteslutas

    Targeted PFAS analyses and extractable organofluorine – Enhancing our understanding of the presence of unknown PFAS in Norwegian wildlife

    Get PDF
    With the current possible presence of thousands of PFAS compounds in industrial emissions, there is an increasing need to assess the impacts of PFAS regulation of conventional PFAS on one hand and the exposure to emerging and yet unknown PFAS on the other. Today’s analytical methodologies using targeted approaches are not sufficient to determine the complete suite of PFAS present. To evaluate the presence of unknown PFAS, we investigated in this study the occurrence of an extended range of target PFAS in various species from the marine and terrestrial Norwegian environment, in relation to the extractable organofluorine (EOF), which yields the total amount of organofluorine. The results showed a varying presence of extractable fluorinated organics, with glaucous gull eggs, otter liver and polar bear plasma showing the highest EOF and a high abundance of PFAS as well. The targeted PFAS measurements explained 1% of the organofluorine for moose liver as the lowest and 94% for otter liver as the highest. PFCAs like trifluoroacetic acid (TFA, reported semi-quantitatively), played a major role in explaining the organic fluorine present. Emerging PFAS as the perfluoroethylcyclohexane sulfonate (PFECHS), was found in polar bear plasma in quantifiable amounts for the first time, confirming earlier detection in arctic species far removed from emission sources. To enable a complete organic fluorine mass balance in wildlife, new approaches are needed, to uncover the presence of new emerging PFAS as cyclic- or ether PFAS together with chlorinated PFAS as well as fluorinated organic pesticides and pharmaceuticals

    Levels and distribution profiles of Per- and Polyfluoroalkyl Substances (PFAS) in a high Arctic Svalbard ice core

    Get PDF
    Per- and polyfluoroalkyl substances (PFAS) are a group of persistent organic contaminants of which some are toxic and bioaccumulative. Several PFAS can be formed from the atmospheric degradation of precursors such as fluorotelomer alcohols (FTOHs) as well as hydrochlorofluorocarbons (HFCs) and other ozone-depleting chlorofluorocarbon (CFC) replacement compounds. Svalbard ice cores have been shown to provide a valuable record of long-range atmospheric transport of contaminants to the Arctic. This study uses a 12.3 m ice core from the remote Lomonosovfonna ice cap on Svalbard to understand the atmospheric deposition of PFAS in the Arctic. A total of 45 PFAS were targeted, of which 26 were detected, using supercritical fluid chromatography (SFC) tandem mass spectrometry (MS/MS) and ultra-performance liquid chromatography (UPLC) MS/MS. C2 to C11 perfluoroalkyl carboxylic acids (PFCAs) were detected continuously in the ice core and their fluxes ranged from 2.5 to 8200 ng m−2 yr−1 (9.51–16,500 pg L−1). Trifluoroacetic acid (TFA) represented 71 % of the total mass of C2 – C11 PFCAs in the ice core and had increasing temporal trends in deposition. The distribution profile of PFCAs suggested that FTOHs were likely the atmospheric precursor to C8 – C11 PFCAs, whereas C2 – C6 PFCAs had alternative sources, such as HFCs and other CFC replacement compounds. Perfluorooctanesulfonic acid (PFOS) was also widely detected in 82 % of ice core subsections, and its isomer profile (81 % linear) indicated an electrochemical fluorination manufacturing source. Comparisons of PFAS concentrations with a marine aerosol proxy showed that marine aerosols were insignificant for the deposition of PFAS on Lomonosovfonna. Comparisons with a melt proxy showed that TFA and PFOS were mobile during meltwater percolation. This indicates that seasonal snowmelt and runoff from post-industrial accumulation on glaciers could be a significant seasonal source of PFAS to ecosystems in Arctic fjords
    corecore