28 research outputs found

    Serum protein profiles as potential biomarkers for infectious disease status in pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In veterinary medicine and animal husbandry, there is a need for tools allowing the early warning of diseases. Preferably, tests should be available that warn farmers and veterinarians during the incubation periods of disease and before the onset of clinical signs. The objective of this study was to explore the potential of serum protein profiles as an early biomarker for infectious disease status. Serum samples were obtained from an experimental pig model for porcine circovirus-associated disease (PCVAD), consisting of Porcine Circovirus type 2 (PCV2) infection in combination with either Porcine Parvovirus (PPV) or Porcine Reproductive and Respiratory Syndrome virus (PRRSV). Sera were collected before and after onset of clinical signs at day 0, 5 and 19 post infection. Serum protein profiles were evaluated against sera from non-infected control animals.</p> <p>Results</p> <p>Protein profiles were generated by SELDI-TOF mass spectrometry in combination with the Proteominerℱ technology to enrich for low-abundance proteins. Based on these protein profiles, the experimentally infected pigs could be classified according to their infectious disease status. Before the onset of clinical signs 88% of the infected animals could be classified correctly, after the onset of clinical sigs 93%. The sensitivity of the classification appeared to be high. The protein profiles could distinguish between separate infection models, although specificity was moderate to low. Classification of PCV2/PRRSV infected animals was superior compared to PCV2/PPV infected animals. Limiting the number of proteins in the profiles (ranging from 568 to 10) had only minor effects on the classification performance.</p> <p>Conclusions</p> <p>This study shows that serum protein profiles have potential for detection and identification of viral infections in pigs before clinical signs of the disease become visible.</p

    Physiological effects of water flow induced swimming exercise in seabream Sparus aurata

    Get PDF
    A longer on-land rearing period of Gilthead seabream Sparus aurata before transfer to sea-cages would allow the farmer to benefit from exercise-enhanced growth, resilience, and robustness as induced by increasing water flow in the tanks. In this study, the physiological effects of flow-conditioning were investigated by subjecting large groups of experimental fish to minimal flow or to flow regimes inducing swimming exercise at 1 or 2 body length (BL) s−1 for a period of 8 months (February–October) in 1,500 L tanks. Fish representing the three treatment groups were then used for: (1) a stress challenge netting test and plasma cortisol measurement (baseline, peaking, and recovery levels), (2) blood plasma measurements of glucose, triglycerides, lactate, cholesterol, growth hormone (GH), and insulin-like growth factor 1 (IGF1), and (3) heart and muscle gene expression of the GH and IGF1 receptors and the muscle transcriptome by deep RNA sequencing (RNAseq). Fish size after 8 months of flow conditioning was 92 ± 27 g body weight (BW) for fish under minimal flow, 106 ± 24 g BW (+15%) at 1 BL s−1, and 125 ± 27 g BW (+36%) at 2 BL s−1. Flow conditioning at 1 BL s−1 provided optimal conditions for growth and uniformity, but also stress (lowest baseline plasma cortisol), robustness (higher condition factor and larger hearts), and energy mobilization (increased plasma glucose). Although flow enhanced growth linearly with swimming speed, also the percentage of lordotic fish increased with exercise, particularly high for swimming at 2 BL s−1. The absence of important differences in plasma GH and IGF1, and expression levels of their receptors in heart and white skeletal muscle, indicated that other factors may be involved in growth enhancement. RNAseq of the white skeletal muscle showed upregulated expression of genes involved in muscle contraction, muscle development and its molecular regulation, and immune genes that may play a role in the muscle repair mechanism. An exercise regime of swimming at 1 BL s−1 can be considered as optimal for farming robust seabream although the increase of skeletal deformities should be avoided.info:eu-repo/semantics/publishedVersio

    Physiological effects of water flow induced swimming exercise in seabream Sparus aurata

    Get PDF
    A longer on-land rearing period of Gilthead seabream Sparus aurata before transfer to sea-cages would allow the farmer to benefit from exercise-enhanced growth, resilience, and robustness as induced by increasing water flow in the tanks. In this study, the physiological effects of flow-conditioning were investigated by subjecting large groups of experimental fish to minimal flow or to flow regimes inducing swimming exercise at 1 or 2 body length (BL) s−1 for a period of 8 months (February–October) in 1,500 L tanks. Fish representing the three treatment groups were then used for: (1) a stress challenge netting test and plasma cortisol measurement (baseline, peaking, and recovery levels), (2) blood plasma measurements of glucose, triglycerides, lactate, cholesterol, growth hormone (GH), and insulin-like growth factor 1 (IGF1), and (3) heart and muscle gene expression of the GH and IGF1 receptors and the muscle transcriptome by deep RNA sequencing (RNAseq). Fish size after 8 months of flow conditioning was 92 ± 27 g body weight (BW) for fish under minimal flow, 106 ± 24 g BW (+15%) at 1 BL s−1, and 125 ± 27 g BW (+36%) at 2 BL s−1. Flow conditioning at 1 BL s−1 provided optimal conditions for growth and uniformity, but also stress (lowest baseline plasma cortisol), robustness (higher condition factor and larger hearts), and energy mobilization (increased plasma glucose). Although flow enhanced growth linearly with swimming speed, also the percentage of lordotic fish increased with exercise, particularly high for swimming at 2 BL s−1. The absence of important differences in plasma GH and IGF1, and expression levels of their receptors in heart and white skeletal muscle, indicated that other factors may be involved in growth enhancement. RNAseq of the white skeletal muscle showed upregulated expression of genes involved in muscle contraction, muscle development and its molecular regulation, and immune genes that may play a role in the muscle repair mechanism. An exercise regime of swimming at 1 BL s−1 can be considered as optimal for farming robust seabream although the increase of skeletal deformities should be avoided.info:eu-repo/semantics/publishedVersio

    Heart Rate and Acceleration Dynamics during Swim-Fitness and Stress Challenge Tests in Yellowtail Kingfish (<i>Seriola lalandi</i>)

    No full text
    The yellowtail kingfish is a highly active and fast-growing marine fish with promising potential for aquaculture. In this study, essential insights were gained into the energy economy of this species by heart rate and acceleration logging during a swim-fitness test and a subsequent stress challenge test. Oxygen consumption values of the 600–800 g fish, when swimming in the range of 0.2 up to 1 m·s−1, were high—between 550 and 800 mg·kg−1·h−1—and the heart rate values—up to 228 bpm—were even among the highest ever measured for fishes. When swimming at these increasing speeds, their heart rate increased from 126 up to 162 bpm, and acceleration increased from 11 up to 26 milli-g. When exposed to four sequential steps of increasing stress load, the decreasing peaks of acceleration (baseline values of 12 to peaks of 26, 19 and 15 milli-g) indicated anticipatory behavior, but the heart rate increases (110 up to 138–144 bpm) remained similar. During the fourth step, when fish were also chased, peaking values of 186 bpm and 44 milli-g were measured. Oxygen consumption and heart rate increased with swimming speed and was well reflected by increases in tail beat and head width frequencies. Only when swimming steadily near the optimal swimming speed were these parameters strongly correlated

    Sanitary Conditions on the Farm Alters Fecal Metabolite Profile in Growing Pigs

    No full text
    The aim of this study was to use fecal metabolite profiling to evaluate the effects of contrasting sanitary conditions and the associated subclinical health status of pigs. We analyzed fecal metabolite profiles by nuclear magnetic resonance (1 H NMR) from pigs aged 14 and 22 weeks. Pigs kept under low and high sanitary conditions differed in fecal metabolites related to the degradation of dietary starch, metabolism of the gut microbiome, and degradation of components of animal (host) origin. The metabolites that differed significantly (FDR < 0.1) were from metabolic processes involved in either maintaining nutrient digestive capacity, including purine metabolism, energy metabolism, bile acid breakdown and recycling, or immune system metabolism. The results show that the fecal metabolite profiles reflect the sanitary conditions under which the pigs are kept. The fecal metabolite profiles closely resembled the profiles of metabolites found in the colon of pigs. Fecal valerate and kynurenic acid could potentially be used as “non-invasive” biomarkers of immune or inflammatory status that could form the basis for monitoring subclinical health status in pigs

    Sanitary Conditions Affect the Colonic Microbiome and the Colonic and Systemic Metabolome of Female Pigs

    No full text
    Differences in sanitary conditions, as model to induce differences in subclinical immune stimulation, affect the growth performance and nutrient metabolism in pigs. The objective of the present study was to evaluate the colonic microbiota and the colonic and systemic metabolome of female pigs differing in health status induced by sanitary conditions. We analyzed blood and colon digesta metabolite profiles using Nuclear Magnetic Resonance (1H NMR) and Triple quadrupole mass spectrometry, as well as colonic microbiota profiles. 1H NMR is a quantitative metabolomics technique applicable to biological samples. Weaned piglets of 4 weeks of age were kept under high or low sanitary conditions for the first 9 weeks of life. The microbiota diversity in colon digesta was higher in pigs subjected to low sanitary conditions (n = 18 per treatment group). The abundance of 34 bacterial genera was higher in colon digesta of low sanitary condition pigs, while colon digesta of high sanitary status pigs showed a higher abundance for four bacterial groups including the Megasphaera genus (p < 0.003) involved in lactate fermentation. Metabolite profiles (n = 18 per treatment group) in blood were different between both groups of pigs. These different profiles suggested changes in general nutrient metabolism, and more specifically in amino acid metabolism. Moreover, differences in compounds related to the immune system and responses to stress were observed. Microbiome-specific metabolites in blood were also affected by sanitary status of the pigs. We conclude that the microbiome composition in colon and the systemic metabolite profiles are affected by sanitary conditions and related to suboptimal health. These data are useful for exploring further relationships between health, metabolic status and performance and for the identification of biomarkers related to health (indices) and performance

    Human Chorionic Gonadotropin Enhancement of Early Maturation and Consequences for Reproductive Success of Feminized European Eel (<i>Anguilla anguilla</i>)

    No full text
    To induce oocyte development, eels are weekly injected with salmon or carp pituitary extract (CPE). The weekly handling and hormone peaks result in inferior oocyte quality; therefore, alternative treatments that improve oocyte quality and reproductive success require investigation. The enhancement of early sexual maturation by a single injection with human chorionic gonadotropin (hCG), administered prior to CPE treatment, was investigated. Fifty feminized eels were subjected to simulated migration, after which eels received either a hCG or a sham injection. After two months, the hCG-treated eels showed an increase in eye size, gonadosomatic index (GSI), and plasma 11-ketotestosterone concentration, when compared with the sham-injected controls. The hCG-treated eels showed increases in oocyte diameter and lipid area, and in ovarian expression of aromatase (cyp19), follicle stimulating hormone receptor (fshr) and lipoprotein lipase (lpl). Yolk was present in the oocytes of the hCG-treated eels, not yet in the oocytes of the controls. The hCG-induced deposition of yolk may relate to early-life treatment with 17ÎČ-estradiol during feminization. hCG-treated eels required four CPE injections less to mature than the controls. hCG treatment may benefit reproductive success in feminized eels by initiating vitellogenesis and reducing the hypophysation period, although larvae were obtained from most females in both groups

    Amine Metabolism Is Influenced by Dietary Protein Source

    No full text
    Growth in world population will inevitably leads to increased demand for protein for humans and animals. Protein from insects and blood plasma are being considered as possible alternatives, but more research on their nutritional quality and health effects is needed. Here, we studied the effect of dietary protein source on metabolism and metabolic amine profiles in serum and urine of mice. Groups of mice were fed semi-purified diets containing 300 g/kg of soybean meal, casein, partially delactosed whey powder, spray-dried plasma protein, wheat gluten meal, and yellow mealworm. Feed and water intake as well as body weight gain were measured for 28 days. After 14 and 28 days, serum and urine samples were collected for measurement of a large panel of amine metabolites. MetaboAnalyst 3.0 was used for analysis of the raw metabolic data. Out of 68 targeted amine metabolites, we could detect 54 in urine and 41 in blood serum. Dietary protein sources were found to have profound effects on host metabolism, particularly in systemic amine profiles, considered here as an endophenotype. We recommend serum over urine to screen for the amine metabolic endophenotype based on partial least squares discriminant analysis. We concluded that metabolites like alpha-aminobutyric acid and 1-methylhistidine are sensitive indicators of too much or too little availability of specific amino acids in the different protein diets. Furthermore, we concluded that amine metabolic profiles can be useful for assessing the nutritional quality of different protein sources

    Steroid implants for the induction of vitellogenesis in feminized European silver eels (Anguilla anguilla L.)

    No full text
    Assisted propagation of the European eel will lead to a closed production cycle supplying the aquaculture industry with juvenile glass eels. Females require long-term weekly treatment with pituitary extract (PE), which is stressful and causes abnormalities in oogenesis. We tested the effects of 17α-methyltestosterone (17 MT), as potent androgen activating the androgen receptor, and 17ÎČ-estradiol (E2), as an inducer of vitellogenesis, to shorten the duration of PE treatment.Four groups of feminized eels were subjected to a simulated migration and subsequent injection with implants containing 17 MT (17 MT-group), E2 (E2-group) or 17 MT plus E2 (17 MT + E2-group) to test for synergistic effects, or without any steroids as controls (C-group). The effects of a 2-months treatment were investigated by determining the eye index (EI), hepatosomatic and gonadosomatic index (HSI and GSI, respectively), plasma steroid concentrations by liquid chromatography mass spectrometry (LCMS), gonadal histology, expression of androgen receptors a and b (ara, arb); estrogen receptor 1 (esr1); FSH receptor (fshr); vitellogenin receptor (vtgr) and aromatase (cyp19), and the required number of weekly PE injections to fully mature. For many parameters, both the 17 MT and E2 groups showed an increase vs. controls, with the 17 MT + E2 group showing a synergistic effect, as seen for EI, GSI (3.4 for 17 MT and for E2, 6.6 for 17 MT + E2), oocyte diameter and ara, arb and esr1 expression. Concentrations of almost all focal steroids decreased with simulated migration and steroid treatment. Only eels of the 17 MT-group showed increased expression of cyp19 and of fshr, while fshr expression increased 44-fold in the 17 MT + E2 group, highlighting that co-implantation is most effective in raising fshr mRNA levels. Specific for eels of the E2 groups were vitellogenesis-associated changes such as an increase of HSI, plasma E2, and presence of yolk in the oocytes. Steroid treatments reduced the duration of PE treatment, again synergistically for co-implantation. In conclusion, E2 is necessary to start vitellogenesis, but 17 MT has specific effects on cyp19 and fshr expression. The combination is necessary for synergistic effects and as such, steroid implants could be applied in assisted reproduction protocols for European eel to improve oocyte quality leading to the production of more vital larvae

    Principal component analysis.

    No full text
    <p>Control and diabetic pigs were either fed a healthy Mediterranean diet or a cafeteria diet differing mainly in fatty acid composition. Plasma protein profiles were determined with a SELDI-TOF equipment and analyzed in relation to physiological parameters. Example of the principal component analysis of peaks showing differential expression between the groups of animals: peak M/Z 6623, CM10, pH 7, fraction 3; ▮: Control Mediterranean diet, ♩: Control Cafeteria diet, ‱: Diabetes Mediterranean diet, â–Ș: Diabetes cafeteria diet.</p
    corecore