1,110 research outputs found

    Physiological Differences in Bleaching Response of the Coral Porites astreoides Along the Florida Keys Reef Tract During High-Temperature Stress

    Get PDF
    The Florida Keys reef tract (FKRT) has a unique geological history wherein Holocene sea-level rise and bathymetry interacted, resulting in a reef-building system with notable spatial differences in reef development. Overprinted on this geologic history, recent global and local stressors have led to degraded reefs dominated by fleshy algae, soft corals, and sponges. Here, we assessed how coral physiology (calcification rate, tissue thickness, reproduction, symbiosis, and bleaching) varies seasonally (winter vs. summer) and geographically using 40 colonies of the mustard hill coral Porites astreoides from four sites across 350 km along the FKRT from 2015 to 2017. The study coincided with a high-temperature event in late summer 2015 that caused heterogeneous levels of coral bleaching across sites. Bleaching severity differed by site, with bleaching response more aligned with heat stress retroactively calculated from local degree heating weeks than those predicted by satellites. Despite differences in temperature profiles and bleaching severity, all colonies hosted Symbiodiniaceae of the same genus (formerly Clade A and subtypes). Overall, P. astreoides at Dry Tortugas National Park, the consistently coolest site, had the highest calcification rates, symbiont cell densities, and reproductive potential (all colonies were reproductive, with most planula larvae per polyp). Corals at Dry Tortugas and Fowey Rocks Light demonstrated strong seasonality in net calcification (higher in summer) and did not express visual or partial-mortality responses from the bleaching event; in contrast, colonies in the middle and southern part of the upper keys, Sombrero Key and Crocker Reef, demonstrated similar reduced fitness from bleaching, but differential recovery trajectories following the heat stress. Identifying reefs, such as Dry Tortugas and possibly Fowey Rocks Light that may serve as heat-stress refugia, is important in selecting candidate sites for adaptive reef-management strategies, such as selective propagation and assisted gene flow, to increase coral-species adaptation to ocean warming

    Measuring multi-year changes in the Symbiodiniaceae algae in Caribbean corals on coral-depleted reefs

    Get PDF
    Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals

    Self-Dual Bending Theory for Vesicles

    Full text link
    We present a self-dual bending theory that may enable a better understanding of highly nonlinear global behavior observed in biological vesicles. Adopting this topological approach for spherical vesicles of revolution allows us to describe them as frustrated sine-Gordon kinks. Finally, to illustrate an application of our results, we consider a spherical vesicle globally distorted by two polar latex beads.Comment: 10 pages, 3 figures, LaTeX2e+IOPar

    What Is the Profile of Overweight Individuals Who Are Unsuccessful Responders to a Low-Energy Diet? A PREVIEW Sub-study

    Get PDF
    This study was performed to evaluate the profile of overweight individuals with pre-diabetes enrolled in PREVIEW who were unable to achieve a body weight loss of >= 8% of the baseline value in response to a 2-month low-energy diet (LED). Their baseline profile reflected potential stress-related vulnerability that predicted a reduced response of body weight to a LED programme. The mean daily energy deficit maintained by unsuccessful weight responders of both sexes was less than the estimated level in successful female (656 vs. 1,299 kcal, p < 0.01) and male (815 vs. 1,659 kcal, p < 0.01) responders. Despite this smaller energy deficit, unsuccessful responders displayed less favorable changes in susceptibility to hunger and appetite sensations. They also did not benefit from the intervention regarding the ability to improve sleep quality. In summary, these results show that some individuals display a behavioral vulnerability which may reduce the ability to lose weight in response to a diet-based weight loss program. They also suggest that this vulnerability may be accentuated by a prolonged diet restriction.Peer reviewe

    Priorities to Promote Participant Engagement in the Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network.

    Get PDF
    BACKGROUND: Engaging diverse populations in cancer genomics research is of critical importance and is a fundamental goal of the NCI Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network. Established as part of the Cancer Moonshot, PE-CGS is a consortium of stakeholders including clinicians, scientists, genetic counselors, and representatives of potential study participants and their communities. Participant engagement is an ongoing, bidirectional, and mutually beneficial interaction between study participants and researchers. PE-CGS sought to set priorities in participant engagement for conducting the network\u27s research. METHODS: PE-CGS deliberatively engaged its stakeholders in the following four-phase process to set the network\u27s research priorities in participant engagement: (i) a brainstorming exercise to elicit potential priorities; (ii) a 2-day virtual meeting to discuss priorities; (iii) recommendations from the PE-CGS External Advisory Panel to refine priorities; and (iv) a virtual meeting to set priorities. RESULTS: Nearly 150 PE-CGS stakeholders engaged in the process. Five priorities were set: (i) tailor education and communication materials for participants throughout the research process; (ii) identify measures of participant engagement; (iii) identify optimal participant engagement strategies; (iv) understand cancer disparities in the context of cancer genomics research; and (v) personalize the return of genomics findings to participants. CONCLUSIONS: PE-CGS is pursuing these priorities to meaningfully engage diverse and underrepresented patients with cancer and posttreatment cancer survivors as participants in cancer genomics research and, subsequently, generate new discoveries. IMPACT: Data from PE-CGS will be shared with the broader scientific community in a manner consistent with participant informed consent and community agreement

    Sex differences in DNA methylation and expression in zebrafish brain: a test of an extended ‘male sex drive’ hypothesis

    Get PDF
    The sex drive hypothesis predicts that stronger selection on male traits has resulted in masculinization of the genome. Here we test whether such masculinizing effects can be detected at the level of the transcriptome and methylome in the adult zebrafish brain. Although methylation is globally similar, we identified 914 specific differentially methylated CpGs (DMCs) between males and females (435 were hypermethylated and 479 were hypomethylated in males compared to females). These DMCs were prevalent in gene body, intergenic regions and CpG island shores. We also discovered 15 distinct CpG clusters with striking sex-specific DNA methylation differences. In contrast, at transcriptome level, more female-biased genes than male-biased genes were expressed, giving little support for the male sex drive hypothesis. Our study provides genome-wide methylome and transcriptome assessment and sheds light on sex-specific epigenetic patterns and in zebrafish for the first time

    Curriculum in early childhood education: critical questions about content, coherence, and control

    Get PDF
    A continuing struggle over curriculum in early childhood education is evident in contemporary research and debate at national and international levels. This reflects the dominant influence of developmental psychology in international discourses, and in policy frameworks that determine approaches to curriculum, pedagogy, and assessment. Focusing on early childhood education, we argue that this struggle generates critical questions about three significant themes within curriculum theory: content, coherence, and control. We outline two positions from which these themes can be understood: Developmental and Educational Psychology and contemporary policy frameworks. We argue that within and between these positions, curriculum content, coherence, and control are viewed in different and sometimes oppositional ways. Following this analysis, we propose that a focus on ‘working theories’ as a third position offers possibilities for addressing some of these continuing struggles, by exploring different implications for how content, coherence, and control might be understood. We conclude that asking critical questions of curriculum in early childhood education is a necessary endeavour to develop alternative theoretical frameworks for understanding the ways in which curriculum can be considered alongside pedagogy, assessment, play, and learning

    Elevation in Body Temperature to Fever Range Enhances and Prolongs Subsequent Responsiveness of Macrophages to Endotoxin Challenge

    Get PDF
    Macrophages are often considered the sentries in innate immunity, sounding early immunological alarms, a function which speeds the response to infection. Compared to the large volume of studies on regulation of macrophage function by pathogens or cytokines, relatively little attention has been devoted to the role of physical parameters such as temperature. Given that temperature is elevated during fever, a long-recognized cardinal feature of inflammation, it is possible that macrophage function is responsive to thermal signals. To explore this idea, we used LPS to model an aseptic endotoxin-induced inflammatory response in BALB/c mice and found that raising mouse body temperature by mild external heat treatment significantly enhances subsequent LPS-induced release of TNF-α into the peritoneal fluid. It also reprograms macrophages, resulting in sustained subsequent responsiveness to LPS, i.e., this treatment reduces “endotoxin tolerance” in vitro and in vivo. At the molecular level, elevating body temperature of mice results in a increase in LPS-induced downstream signaling including enhanced phosphorylation of IKK and IκB, NF-κB nuclear translocation and binding to the TNF-α promoter in macrophages upon secondary stimulation. Mild heat treatment also induces expression of HSP70 and use of HSP70 inhibitors (KNK437 or Pifithrin-µ) largely abrogates the ability of the thermal treatment to enhance TNF-α, suggesting that the induction of HSP70 is important for mediation of thermal effects on macrophage function. Collectively, these results support the idea that there has been integration between the evolution of body temperature regulation and macrophage function that could help to explain the known survival benefits of fever in organisms following infection
    corecore