970 research outputs found

    Frequency-dependent complex conductivity of an organic thin-film transistor

    Full text link
    We measure the complex impedance between source/drain electrodes and the gate electrode of a pentacene thin-film transistor (TFT) at frequencies 50 Hz < omega/2pi < 20 kHz. Modeling the TFT as a distributed RC network (RC transmission line), we find that the data cannot be explained by a model including only a real, frequency-independent sheet conductivity. Instead, we use the RC transmission line model to extract the frequency-dependent complex sheet conductivity sigma(omega) = sigma'(omega) + jsigma"(omega) of the pentacene film. At high frequencies, sigma(omega) increases with frequency, sigma'(omega) and sigma"(omega) become similar in magnitude, and the on/off ratio is significantly reduced.Comment: 13 pages, 4 figure

    Increased susceptibility to repeated freeze-thaw cycles in Escherichia coli following long-term evolution in a benign environment

    Get PDF
    BACKGROUND: In order to study the dynamics of evolutionary change, 12 populations of E. coli B were serially propagated for 20,000 generations in minimal glucose medium at constant 37°C. Correlated changes in various other traits have been previously associated with the improvement in competitive fitness in the selective environment. This study examines whether these evolved lines changed in their ability to tolerate the stresses of prolonged freezing and repeated freeze-thaw cycles during adaptation to a benign environment. RESULTS: All 12 lines that evolved in the benign environment for 20,000 generations are more sensitive to freeze-thaw cycles than their ancestor. The evolved lines have an average mortality rate of 54% per daily cycle, compared to the ancestral rate of 34%. By contrast, there was no significant difference between the evolved lines and their ancestor in mortality during prolonged freezing. There was also some variability among the evolved lines in susceptibility to repeated freeze-thaw cycles. Those lines that had evolved higher competitive fitness in the minimal glucose medium at 37°C also had higher mortality during freeze-thaw cycles. This variability was not associated, however, with differences among lines in DNA repair functionality and mutability. CONCLUSION: The consistency of the evolutionary declines in freeze-thaw tolerance, the correlation between fitness in glucose medium at 37°C and mortality during freeze-thaw cycles, and the absence of greater declines in freeze-thaw survival among the hypermutable lines all indicate a trade-off between performance in minimal glucose medium at 37°C and the capacity to tolerate this stress. Analyses of the mutations that enhance fitness at 37°C may shed light on the physiological basis of this trade-off

    Does the Red Queen reign in the kingdom of digital organisms?

    Get PDF
    In competition experiments between two RNA viruses of equal or almost equal fitness, often both strains gain in fitness before one eventually excludes the other. This observation has been linked to the Red Queen effect, which describes a situation in which organisms have to constantly adapt just to keep their status quo. I carried out experiments with digital organisms (self-replicating computer programs) in order to clarify how the competing strains' location in fitness space influences the Red-Queen effect. I found that gains in fitness during competition were prevalent for organisms that were taken from the base of a fitness peak, but absent or rare for organisms that were taken from the top of a peak or from a considerable distance away from the nearest peak. In the latter two cases, either neutral drift and loss of the fittest mutants or the waiting time to the first beneficial mutation were more important factors. Moreover, I found that the Red-Queen dynamic in general led to faster exclusion than the other two mechanisms.Comment: 10 pages, 5 eps figure

    Adaptive Radiation from Resource Competition in Digital Organisms

    Get PDF
    Species richness often peaks at intermediate productivity and decreases as resources become more or less abundant. The mechanisms that produce this pattern are not completely known, but several previous studies have suggested environmental heterogeneity as a cause. In experiments with evolving digital organisms and populations of fixed size, maximum species richness emerges at intermediate productivity, even in a spatially homogeneous environment, owing to frequency-dependent selection to exploit an influx of mixed resources. A diverse pool of limiting resources is sufficient to cause adaptive radiation, which is manifest by the origin and maintenance of phenotypically and phylogenetically distinct groups of organisms

    Fitness in time-dependent environments includes a geometric contribution

    Full text link
    Phenotypic evolution implies sequential fixations of new genomic sequences. The speed at which these mutations fixate depends, in part, on the relative fitness (selection coefficient) of the mutant vs. the ancestor. Using a simple population dynamics model we show that the relative fitness in dynamical environments is not equal to the fitness averaged over individual environments. Instead it includes a term that explicitly depends on the sequence of the environments. This term is geometric in nature and depends only on the oriented area enclosed by the trajectory taken by the system in the environment state space. It is related to the well-studied geometric phases in classical and quantum physical systems. We discuss possible biological implications of these observations, focusing on evolution of novel metabolic or stress-resistant functions

    Expression Profiles Reveal Parallel Evolution of Epistatic Interactions Involving the CRP Regulon in Escherichia coli

    Get PDF
    The extent and nature of epistatic interactions between mutations are issues of fundamental importance in evolutionary biology. However, they are difficult to study and their influence on adaptation remains poorly understood. Here, we use a systems-level approach to examine epistatic interactions that arose during the evolution of Escherichia coli in a defined environment. We used expression arrays to compare the effect on global patterns of gene expression of deleting a central regulatory gene, crp. Effects were measured in two lineages that had independently evolved for 20,000 generations and in their common ancestor. We found that deleting crp had a much more dramatic effect on the expression profile of the two evolved lines than on the ancestor. Because the sequence of the crp gene was unchanged during evolution, these differences indicate epistatic interactions between crp and mutations at other loci that accumulated during evolution. Moreover, a striking degree of parallelism was observed between the two independently evolved lines; 115 genes that were not crp-dependent in the ancestor became dependent on crp in both evolved lines. An analysis of changes in crp dependence of well-characterized regulons identified a number of regulatory genes as candidates for harboring beneficial mutations that could account for these parallel expression changes. Mutations within three of these genes have previously been found and shown to contribute to fitness. Overall, these findings indicate that epistasis has been important in the adaptive evolution of these lines, and they provide new insight into the types of genetic changes through which epistasis can evolve. More generally, we demonstrate that expression profiles can be profitably used to investigate epistatic interactions

    Genomic divergence of Escherichia coli strains: evidence for horizontal transfer and variation in mutation rates

    Get PDF
    This report describes the sequencing in the Escherichia coli B genome of 36 randomly chosen regions that are present in most or all of the fully sequenced E. coli genomes. The phylogenetic relationships among E. coli strains were examined, and evidence for the horizontal gene transfer and variation in mutation rates was determined. The overall phylogenetic tree indicated that E. coli B and K-12 are the most closely related strains, with E. coli O157:H7 being more distantly related, Shigella flexneri 2a even more, and E. coli CFT073 the most distant strain. Within the B, K-12, and O157:H7 clusters, several regions supported alternative topologies. While horizontal transfer may explain these phylogenetic incongruities, faster evolution at synonymous sites along the O157:H7 lineage was also identified. Further interpretation of these results is confounded by an association among genes showing more rapid evolution and results supporting horizontal transfer. Using genes supporting the B and K-12 clusters, an estimate of the genomic mutation rate from a long-term experiment with E. coli B, and an estimate of 200 generations per year, it was estimated that B and K-12 diverged several hundred thousand years ago, while O157:H7 split off from their common ancestor about 1.5–2 million years ago [Int Microbiol 2005 8(4):271-278

    Evolution Equation of Phenotype Distribution: General Formulation and Application to Error Catastrophe

    Full text link
    An equation describing the evolution of phenotypic distribution is derived using methods developed in statistical physics. The equation is solved by using the singular perturbation method, and assuming that the number of bases in the genetic sequence is large. Applying the equation to the mutation-selection model by Eigen provides the critical mutation rate for the error catastrophe. Phenotypic fluctuation of clones (individuals sharing the same gene) is introduced into this evolution equation. With this formalism, it is found that the critical mutation rate is sometimes increased by the phenotypic fluctuations, i.e., noise can enhance robustness of a fitted state to mutation. Our formalism is systematic and general, while approximations to derive more tractable evolution equations are also discussed.Comment: 22 pages, 2 figure

    Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria in a long-term evolution experiment

    Get PDF
    Background: Predicting adaptive trajectories is a major goal of evolutionary biology and useful for practical applications. Systems biology has enabled the development of genome-scale metabolic models. However, analysing these models via flux balance analysis (FBA) cannot predict many evolutionary outcomes including adaptive diversification, whereby an ancestral lineage diverges to fill multiple niches. Here we combine in silico evolution with FBA and apply this modelling framework, evoFBA, to a long-term evolution experiment with Escherichia coli. Results: Simulations predicted the adaptive diversification that occurred in one experimental population and generated hypotheses about the mechanisms that promoted coexistence of the diverged lineages. We experimentally tested and, on balance, verified these mechanisms, showing that diversification involved niche construction and character displacement through differential nutrient uptake and altered metabolic regulation. Conclusion: The evoFBA framework represents a promising new way to model biochemical evolution, one that can generate testable predictions about evolutionary and ecosystem-level outcomes
    corecore