7 research outputs found

    Advanced Rotorcraft Transmission (ART) program-Boeing helicopters status report

    Get PDF
    The Advanced Rotorcraft Transmission (ART) program is structured to incorporate key emerging material and component technologies into an advanced rotorcraft transmission with the intention of making significant improvements in the state of the art (SOA). Specific objectives of ART are: (1) Reduce transmission weight by 25 pct.; (2) Reduce transmission noise by 10 dB; and (3) Improve transmission life and reliability, while extending Mean Time Between Removal to 5000 hr. Boeing selected a transmission sized for the Tactical Tilt Rotor (TTR) aircraft which meets the Future Air Attack Vehicle (FAVV) requirements. Component development testing will be conducted to evaluate the high risk concepts prior to finalizing the advanced transmission configuration. The results of tradeoff studies and development test which were completed are summarized

    The relative noise levels of parallel axis gear sets with various contact ratios and gear tooth forms

    Get PDF
    The real noise reduction benefits which may be obtained through the use of one gear tooth form as compared to another is an important design parameter for any geared system, especially for helicopters in which both weight and reliability are very important factors. This paper describes the design and testing of nine sets of gears which are as identical as possible except for their basic tooth geometry. Noise measurements were made at various combinations of load and speed for each gear set so that direct comparisons could be made. The resultant data was analyzed so that valid conclusions could be drawn and interpreted for design use

    Influence of Gear Design Parameters on Gearbox Radiated Noise

    Get PDF
    Spur and helical gears were tested in the NASA gear-noise rig to compare the noise produced by different gear designs. Sound power measurements were performed under controlled conditions for a matrix of operating conditions. Sound power was computed from near-field acoustic intensity scans taken just above the top surface of the gearbox. Test gears included four spur and five helical gear designs. The gears were designed to be as nearly identical as possible except for deliberate differences in tooth geometry and contact ratio. Test results are presented as a function of the gear design and operating conditions in the form of sound power charts and as narrow-band spectra

    Bibliography

    No full text

    Literature

    No full text

    Post-Capitalist Society

    No full text
    corecore