521 research outputs found
A unified supernova catalogue
In this paper a new supernova catalogue containing data for 5526
extragalactic supernovae that were discovered up to 2010 December 31 is
presented. It combines several catalogues that are currently available online
in a consistent and traceable way. During the comparison of the catalogues
inconsistent entries were identified and resolved where possible. Remaining
inconsistencies are marked transparently and can be easily identified. Thus it
is possible to select a high-quality sample in a most simple way. Where
available, redshift-based distance estimates to the supernovae were replaced by
journal-refereed distances. Examples of statistical studies that are now
possible with this new catalogue are presented in this paper.Comment: 9 pages, 12 figures, catalogue is available at
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/538/A12
Extinction of the N=20 neutron-shell closure for 32Mg examined by direct mass measurements
The 'island of inversion' around Mg is one of the most important
paradigm for studying the disappearance of the stabilizing 'magic' of a shell
closure. We present the first Penning-trap mass measurements of the exotic
nuclides Na and Mg, which allow a precise determination of
the empirical shell gap for Mg. The new value of 1.10(3) MeV is the
lowest observed shell gap for any nuclide with a canonical magic number.Comment: 6 pages, 4 figures, submitted to Physical Review
Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements
A new technique has been developed at TRIUMF's TITAN facility to perform
in-trap decay spectroscopy. The aim of this technique is to eventually measure
weak electron capture branching ratios (ECBRs) and by this to consequently
determine GT matrix elements of decaying nuclei. These branching
ratios provide important input to the theoretical description of these decays.
The feasibility and power of the technique is demonstrated by measuring the
ECBR of Cs.Comment: 9 pages, 9 figure
Low-Background In-Trap Decay Spectroscopy with TITAN at TRIUMF
An in-trap decay spectroscopy setup has been developed and constructed for
use with the TITAN facility at TRIUMF. The goal of this device is to observe
weak electron-capture (EC) branching ratios for the odd-odd intermediate nuclei
in the decay process. This apparatus consists of an up-to 6 Tesla,
open-access spectroscopy ion-trap, surrounded radially by up to 7 planar Si(Li)
detectors which are separated from the trap by thin Be windows. This
configuration provides a significant increase in sensitivity for the detection
of low-energy photons by providing backing-free ion storage and eliminating
charged-particle-induced backgrounds. An intense electron beam is also employed
to increase the charge-states of the trapped ions, thus providing storage times
on the order of minutes, allowing for decay-spectroscopy measurements. The
technique of multiple ion-bunch stacking was also recently demonstrated, which
further extends the measurement possibilities of this apparatus. The current
status of the facility and initial results from a In measurement are
presented.Comment: Proceedings for the 2nd International Conference on Advances in
Radioactive Isotope Science (ARIS2014
Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets
Using the Penning trap mass spectrometer TITAN, we performed the first direct
mass measurements of 20,21Mg, isotopes that are the most proton-rich members of
the A = 20 and A = 21 isospin multiplets. These measurements were possible
through the use of a unique ion-guide laser ion source, a development that
suppressed isobaric contamination by six orders of magnitude. Compared to the
latest atomic mass evaluation, we find that the mass of 21Mg is in good
agreement but that the mass of 20Mg deviates by 3{\sigma}. These measurements
reduce the uncertainties in the masses of 20,21Mg by 15 and 22 times,
respectively, resulting in a significant departure from the expected behavior
of the isobaric multiplet mass equation in both the A = 20 and A = 21
multiplets. This presents a challenge to shell model calculations using either
the isospin non-conserving USDA/B Hamiltonians or isospin non-conserving
interactions based on chiral two- and three-nucleon forces.Comment: 5 pages, 2 figure
Precision mass measurements of magnesium isotopes and implications on the validity of the Isobaric Mass Multiplet Equation
If the mass excess of neutron-deficient nuclei and their neutron-rich mirror
partners are both known, it can be shown that deviations of the Isobaric Mass
Multiplet Equation (IMME) in the form of a cubic term can be probed. Such a
cubic term was probed by using the atomic mass of neutron-rich magnesium
isotopes measured using the TITAN Penning trap and the recently measured
proton-separation energies of Cl and Ar. The atomic mass of
Mg was found to be within 1.6 of the value stated in the Atomic
Mass Evaluation. The atomic masses of Mg were measured to be both
within 1, while being 8 and 34 times more precise, respectively. Using
the Mg mass excess and previous measurements of Cl we uncovered a
cubic coefficient of = 28(7) keV, which is the largest known cubic
coefficient of the IMME. This departure, however, could also be caused by
experimental data with unknown systematic errors. Hence there is a need to
confirm the mass excess of S and the one-neutron separation energy of
Cl, which have both come from a single measurement. Finally, our results
were compared to ab initio calculations from the valence-space in-medium
similarity renormalization group, resulting in a good agreement.Comment: 7 pages, 3 figure
- …