789 research outputs found

    Toward a Universal Rule for the Reasonable Disposition of Surface Waters in California

    Get PDF
    In designing a rule of reasonableness for the disposition of surface waters in California, the California Supreme Court has expressly considered the competing policies of equity and the promotion of development. The Author argues that another policy, overall economic efficiency, should be given equal consideration as the other policies because it promotes efficient use of resources and encourages the parties to come to solutions that lessen potential damage. This Comment analyzes the rules announced in Locklin v. City of Lafayette and Keys v. Romley. The Author questions the need for two different rules and proposes an integrated rule that addresses the three relevant policy objectives

    Probe of Lorentz Invariance Violation effects and determination of the distance of PG 1553+113

    Full text link
    The high frequency peaked BL Lac object PG 1553+113 underwent a flaring event in 2012. The High Energy Stereoscopic System (H.E.S.S.) observed this source for two consecutive nights at very high energies (VHE, E>E>100~GeV). The data show an increase of a factor of three of the flux with respect to archival measurements with the same instrument and hints of intra-night variability. The data set has been used to put constraints on possible Lorentz invariance violation (LIV), manifesting itself as an energy dependence of the velocity of light in vacuum, and to set limits on the energy scale at which Quantum Gravity effects causing LIV may arise. With a new method to combine H.E.S.S. and Fermi large area telescope data, the previously poorly known redshift of PG 1555+113 has been determined to be close to the value derived from optical measurements.Comment: 2014 Fermi Symposium proceedings - eConf C14102.

    H.E.S.S. discovery of very-high-energy gamma-ray emission of PKS 1440-389

    Full text link
    Blazars are the most abundant class of known extragalactic very-high-energy (VHE, E>100 GeV) gamma-ray sources. However, one of the biggest difficulties in investigating their VHE emission resides in their limited number, since less than 60 of them are known by now. In this contribution we report on H.E.S.S. observations of the BL Lac object PKS 1440-389. This source has been selected as target for H.E.S.S. based on its high-energy gamma-ray properties measured by Fermi-LAT. The extrapolation of this bright, hard-spectrum gamma-ray blazar into the VHE regime made a detection on a relatively short time scale very likely, despite its uncertain redshift. H.E.S.S. observations were carried out with the 4-telescope array from February to May 2012 and resulted in a clear detection of the source. Contemporaneous multi-wavelength data are used to construct the spectral energy distribution of PKS 1440-389 which can be described by a simple one-zone synchrotron-self Compton model.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    Optical-NIR spectroscopy of the puzzling gamma-ray source 3FGL 1603.9-4903/PMN J1603-4904 with X-shooter

    Get PDF
    The Fermi/LAT instrument has detected about two thousands Extragalactic High Energy (E > 100 MeV) gamma-ray sources. One of the brightest is 3FGL 1603.9-4903, associated to the radio source PMN J1603-4904. Its nature is not yet clear, it could be either a very peculiar BL Lac or a CSO (Compact Symmetric Object) radio source, considered as the early stage of a radio galaxy. The latter, if confirmed, would be the first detection in gamma-rays for this class of objects. Recently a redshift z=0.18 +/- 0.01 has been claimed on the basis of the detection of a single X-ray line at 5.44 +/- 0.05 keV interpreted as a 6.4 keV (rest frame) fluorescent line. We aim to investigate the nature of 3FGL 1603.9-4903/PMN J1603-4904 using optical to NIR spectroscopy. We observed PMN J1603-4904 with the UV-NIR VLT/X-shooter spectrograph for two hours. We extracted spectra in the VIS and NIR range that we calibrated in flux and corrected for telluric absorption and we systematically searched for absorption and emission features. The source was detected starting from ~6300 Ang down to 24000 Ang with an intensity comparable to the one of its 2MASS counterpart and a mostly featureless spectrum. The continuum lacks absorption features and thus is non-stellar in origin and likely non-thermal. On top of this spectrum we detected three emission lines that we interpret as the Halpha-[NII] complex, the [SII] 6716,6731 doublet and the [SIII] 9530 line, obtaining a redshift estimate of z= 0.2321 +/- 0.0004. The equivalent width of the Halpha-[NII] complex implies that PMN J1603-4904 does not follow the observational definition of BL Lac, the line ratios suggest that a LINER/Seyfert nucleus is powering the emission. This new redshift measurement implies that the X-ray line previously detected should be interpreted as a 6.7 keV line which is very peculiar.Comment: Published in Astronomy and Astrophysic

    Rollover prevention system dedicated to ATVs on natural ground

    Get PDF
    In this paper, an algorithm dedicated to light ATVs, which estimates and anticipates the rollover, is proposed. It is based on the on-line estimation of the Lateral Load Transfer (LLT), allowing the evaluation of dynamic instabilities. The LLT is computed thanks to a dynamical model split into two 2D projections. Relying on this representation and a low cost perception system, an observer is proposed to estimate on-line the terrain properties (grip conditions and slope), then allowing to deduce accurately the risk of instability. Associated to a predictive control algorithm, based on the extrapolation of riders action, the risk can be anticipated, enabling to warn the pilot and to consider the implementation of active actions

    Dual back-stepping observer to anticipate the rollover risk in under/over-steering situations. Application to ATVs in off-road context

    Get PDF
    International audienceIn this paper an ATV (All-Terrain Vehicle) rollover prevention system is proposed. It is based on the online estimation and prediction of the Lateral Load Transfer (LLT), allowing the evaluation of dynamic instabilities. Using a vehicle model based on two 2D representations, the LLT can be estimated and predicted. As we consider off road vehicle, grip conditions must be encountered and are here estimated thanks to observation theory. Nevertheless, two main behaviours (over/under-steering) may be encountered pending on grip, and vehicle configuration. Because of the low cost sensor, these two opposite dynamics cannot be explicitly discriminated. As a result, two observers are used according to the vehicle behaviour. Based on a bicycle model and a low cost perception system, they estimate on-line the terrain properties (grip conditions, global sideslip angle and bank angle). A "supervisor" selects on-line the right observer. Associated to a predictive control algorithm, based on the extrapolation of rider's action and the selected estimated dynamical state, the risk can be anticipated, enabling to warn the pilot and to consider the implementation of active actions. Simulations and full-scale experimentations are presented to discuss about the efficiency of the proposed solution

    On-line estimation of a stability metric including grip conditions and slope: Application to rollover prevention for all-terrain vehicles

    Get PDF
    International audienceRollover is the principal cause of serious accidents for All-Terrain Vehicles (ATV), especially for light vehicles (e.g.quad bikes). In order to reduce this risk, the development of active devices, contributes a promising solution. With this aim, this paper proposes an algorithm allowing to predict the rollover risk, by means of an on-line estimation of a stability criterion. Among several rollover indicators, the Lateral Load Transfer (LLT) has been chosen because its estimation needs only low cost sensing equipment compared to the price of a light ATV. An adapted backstepping observer associated to a bicycle model is first developed, allowing the estimation of the grip conditions. In addition, the lateral slope is estimated thanks to a classical Kalman filter relying on measured acceleration and roll rate. Then, an expression of the LLT is derived from a roll model taking into account the grip conditions and the slope. Finally, the LLT value is anticipated by means of a prediction algorithm. The capabilities of this system are investigated thanks to full scale experiments with a quad bike

    Automatic guidance of an off-road mobile robot with a trailer: Application to the control of agricultural passive towed implements

    Get PDF
    International audienceThis paper presents the study of both steering and speed control algorithms of an off-road mobile robot in order to accurately guide, forward or backward, the position of its trailer with respect to a planned trajectory, whatever ground conditions and trajectory shape. The proposed algorithms are based on an extended kinematic model of the system, accounting for sliding effects with additional sliding parameters. An observer is developed to obtain a relevant on-line estimation of these parameters. An original steering control algorithm is then proposed, considering the implement as an independent virtual vehicle: A first control law calculates the direction of the linear velocity vector at the hitch point that would ensure the convergence of this virtual vehicle to the planned trajectory. Next, a reference angle between the tractor and the implement leading to such a velocity vector is inferred, and finally a second control law is designed to stabilize the actual tractor implement angle on this reference angle. The capabilities of the proposed algorithms are investigated through full-scale experiments

    Maneuvers automation for agricultural vehicle in headland

    Get PDF
    International audienceThis paper addresses the problem of path generation and motion control for the autonomous maneuvers of agricultural vehicle in headland. A reverse turn planner is firstly presented, based on primitives connected together to easily generate the reference motion. Next, the steering and speed control algorithms are considered. To perform accurate path following, the sliding conditions are taken into account with a kinematic model extended with sliding parameters. In addition, predictive actions are developed to anticipate for vehicle steering and speed variations. The capabilities of the proposed algorithms are finally investigated through full-scale experiments. Fish-tail maneuvers are autonomously performed with an experimental mobile robot, and promising results are reported during reverse turn maneuvers with a vehicle-trailer system

    Observations of the Crab Nebula with H.E.S.S. Phase II

    Full text link
    The High Energy Stereoscopic System (H.E.S.S.) phase I instrument was an array of four 100m2100\,\mathrm{m}^2 mirror area Imaging Atmospheric Cherenkov Telescopes (IACTs) that has very successfully mapped the sky at photon energies above 100\sim 100\,GeV. Recently, a 600m2600\,\mathrm{m}^2 telescope was added to the centre of the existing array, which can be operated either in standalone mode or jointly with the four smaller telescopes. The large telescope lowers the energy threshold for gamma-ray observations to several tens of GeV, making the array sensitive at energies where the Fermi-LAT instrument runs out of statistics. At the same time, the new telescope makes the H.E.S.S. phase II instrument. This is the first hybrid IACT array, as it operates telescopes of different size (and hence different trigger rates) and different field of view. In this contribution we present results of H.E.S.S. phase II observations of the Crab Nebula, compare them to earlier observations, and evaluate the performance of the new instrument with Monte Carlo simulations.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland
    corecore