103 research outputs found

    Comparing Five New Polymer Barriers for the Prevention of Intra-abdominal Adhesions in a Rat Model

    Get PDF
    Background: Intra-abdominal adhesions affect up to 93% of the patients after abdominal surgery, causing small-bowel obstruction, infertility, chronic abdominal pain, and iatrogenic bowel injury at reoperation. The efficacy of five new polymer antiadhesive barriers to avoid adhesion formation is evaluated in an ischemic button model in rats. Materials and methods: Five new, biodegradable polyurethane and copolyester-based, anti-adhesive barriers (A1, A2, A3, B1, and B2) were evaluated in separate experimental groups and compared with two control groups (hyaluronate carboxymethylcellulose barrier and no antiadhesive barrier) in an ischemic button model (n = 11 per group operated). After 14 d, the quantity and quality of the adhesions were scored macroscopically. The Kruskal-Wallis with ManneWhitney U post hoc and the Fisher's exact tests were used for data analysis. The Bonferroni correction method was applied, and a P-value <0.007 was considered significant. Results: Two animals died during surgery and follow-up. A significant reduction of adhesions to ischemic buttons was found in the A2 group (median, 3.5; interquartile range, 2.25) compared with no adhesive barrier (median, 8.0; interquartile range, 2.0) (P = 0.001). The remaining groups did not differ significantly regarding adhesion quantity or quality. Adverse events were observed in the A2, A3, and B2 groups. Conclusions: The A2 antiadhesive barrier reduced the adhesion formation significantly compared with no anti-adhesive barrier, but applicability is questionable because of extensive adverse events observed due to implantation of the anti-adhesive barrier. The Nair score appears not to be sensitive enough to detect differences in adhesion formation in this model. Future research should focus on anti-adhesive barriers that are self-adhering. (C) 2019 Published by Elsevier Inc

    Starvation Induces Phase-Specific Changes in the Proteome of Mouse Small Intestine

    Get PDF
    Food deprivation results in metabolic, structural, and functional changes in the small intestine that influences gut mucosal integrity, epithelial cell proliferation, mucin synthesis, and other processes. The underlying mechanisms are still unclear, which lead to the study of molecular effects of short-term and long-term starvation in the intestine of mice. A comparative proteomics approach, combining two-dimensional gel electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, was used to identify intestinal proteins whose expression is changed under different starvation conditions (0, 12, 24, and 72 h). In total, the expression levels of 80 protein spots changed significantly between the different groups. The results demonstrate that after 12 h of starvation, mainly proteins involved in glycolysis and energy metabolism show decreased expression levels. Starvation for 24 h results in a down-regulation of proteins involved in protein synthesis and amino acid metabolism. Simultaneously, proteins with a protective role, e.g., reg I and II, glutathione peroxidase 3, and carbonic anhydrase 3, are clearly up-regulated. The last starvation phase (72 h) is characterized by increased ezrin expression, which may enhance villus morphogenesis critical for survival. Together, these results provide novel insights in the intestinal starvation response and may contribute to improved nutritional support during conditions characterized by malnutrition

    Exercise-Induced splanchnic hypoperfusion results in gut dysfunction in healthy men

    Get PDF
    Background Splanchnic hypoperfusion is common in various pathophysiological conditions and often considered to lead to gut dysfunction. While it is known that physiological situations such as physical exercise also result in splanchnic hypoperfusion, the consequences of flow redistribution at the expense of abdominal organs remained to be determined. This study focuses on the effects of splanchnic hypoperfusion on the gut, and the relationship between hypoperfusion, intestinal injury and permeability during physical exercise in healthy men. Methods and Findings Healthy men cycled for 60 minutes at 70% of maximum workload capacity. Splanchnic hypoperfusion was assessed using gastric tonometry. Blood, sampled every 10 minutes, was analyzed for enterocyte damage parameters (intestinal fatty acid binding protein (I-FABP) and ileal bile acid binding protein (I-BABP)). Changes in intestinal permeability were assessed using sugar probes. Furthermore, liver and renal parameters were assessed. Splanchnic perfusion rapidly decreased during exercise, reflected by increased gapg-apCO2 from −0.85±0.15 to 0.85±0.42 kPa (p < 0.001). Hypoperfusion increased plasma I-FABP (615±118 vs. 309±46 pg/ml, p < 0.001) and I-BABP (14.30±2.20 vs. 5.06±1.27 ng/ml, p < 0.001), and hypoperfusion correlated significantly with this small intestinal damage (rS = 0.59; p < 0.001). Last of all, plasma analysis revealed an increase in small intestinal permeability after exercise (p < 0.001), which correlated with intestinal injury (rS = 0.50; p < 0.001). Liver parameters, but not renal parameters were elevated. Conclusions Exercise-induced splanchnic hypoperfusion results in quantifiable small intestinal injury. Importantly, the extent of intestinal injury correlates with transiently increased small intestinal permeability, indicating gut barrier dysfunction in healthy individuals. These physiological observations increase our knowledge of splanchnic hypoperfusion sequelae, and may help to understand and prevent these phenomena in patients

    An Evaluation and Implementation of Rule-Based Home Energy Management System Using the Rete Algorithm

    Get PDF
    In recent years, sensors become popular and Home Energy Management System (HEMS) takes an important role in saving energy without decrease in QoL (Quality of Life). Currently, many rule-based HEMSs have been proposed and almost all of them assume “IF-THEN” rules. The Rete algorithm is a typical pattern matching algorithm for IF-THEN rules. Currently, we have proposed a rule-based Home Energy Management System (HEMS) using the Rete algorithm. In the proposed system, rules for managing energy are processed by smart taps in network, and the loads for processing rules and collecting data are distributed to smart taps. In addition, the number of processes and collecting data are reduced by processing rules based on the Rete algorithm. In this paper, we evaluated the proposed system by simulation. In the simulation environment, rules are processed by a smart tap that relates to the action part of each rule. In addition, we implemented the proposed system as HEMS using smart taps

    Effect of wheat bran derived prebiotic supplementation on gastrointestinal transit, gut microbiota, and metabolic health: a randomized controlled trial in healthy adults with a slow gut transit

    Get PDF
    Acute intake of the wheat bran extract Arabinoxylan-Oligosaccharide (AXOS) modulates the gut microbiota, improves stool characteristics and postprandial glycemia in healthy humans. Yet, little is known on how long-term AXOS intake influences gastrointestinal (GI) functioning, gut microbiota, and metabolic health. In this randomized, placebo-controlled, double-blind study, we evaluated the effects of AXOS intake on GI function and metabolic health in adults with slow GI transit without constipation. Forty-eight normoglycemic adults were included with whole-gut transit time (WGTT) of >35 h receiving either 15 g/day AXOS or placebo (maltodextrin) for 12-wks. The primary outcome was WGTT, and secondary outcomes included stool parameters, gut permeability, short-chain fatty acids (SCFA), microbiota composition, energy expenditure, substrate oxidation, glucose, insulin, lipids, gut hormones, and adipose tissue (AT) function. WGTT was unchanged, but stool consistency softened after AXOS. 12-wks of AXOS intake significantly changed the microbiota by increasing Bifidobacterium and decreasing microbial alpha-diversity. With a good classification accuracy, overall microbiota composition classified responders with decreased WGTT after AXOS. The incretin hormone Glucagon-like protein 1 was reduced after AXOS compared to placebo. Energy expenditure, plasma metabolites, AT parameters, SCFA, and gut permeability were unchanged. In conclusion, intake of wheat bran extract increases fecal Bifidobacterium and softens stool consistency without major effects on energy metabolism in healthy humans with a slow GI transit. We show that overall gut microbiota classified responders with decreased WGTT after AXOS highlighting that GI transit and change thereof were associated with gut microbiota independent of Bifidobacterium. NCT02491125.</p

    Acute Haemodynamic Changes During Haemodialysis Do Not Exacerbate Gut Hyperpermeability

    Get PDF
    © 2019 The Author(s)Introduction: The gastrointestinal tract is a potential source of inflammation in dialysis patients. In-vitro studies suggest breakdown of the gut barrier in uraemia leading to increased intestinal permeability and it is hypothesised that haemodialysis exacerbates this problem due to mesenteric ischemia induced by blood volume changes during treatment. Method: The effect of haemodialysis on intestinal permeability was studied in ten haemodialysis patients and compared with five controls. Intestinal permeability was assessed by measuring the differential absorption of four orally administered sugar probes which provides an index of small and whole bowel permeability. A multi-sugar solution (containing lactulose, rhamnose, sucralose and erythritol) was orally administered after an overnight fast. Plasma levels of all sugar probes were measured hourly for 10hrs post-administration. In haemodialysis patients, the procedure was carried out twice – once on a non-dialysis day and once immediately after haemodialysis. Results: Area under curve (AUC) for lactulose: rhamnose (L:R) ratio and sucralose: erythritol (S:E) ratio was similar post-dialysis and on non-dialysis days. AUC for L:R was higher in haemodialysis patients compared to controls (0.071 vs. 0.034,p=0.001), AUC for S:E ratio was not significantly different. Levels of lactulose, sucralose and erythritol were elevated and retained for longer in haemodialysis patients compared to controls due to dependence of sugars on kidney function for clearance. Conclusion: We found no significant acute changes in intestinal permeability in relation to the haemodialysis procedure. Valid comparison of intestinal permeability between controls and haemodialysis patients was not possible due to the strong influence of kidney function on sugar levels.Peer reviewedFinal Published versio

    Treating colorectal peritoneal metastases with an injectable cytostatic loaded supramolecular hydrogel in a rodent animal model

    Get PDF
    Patients with peritoneal metastases (PM) of colorectal cancer have a very poor outcome. Intraperitoneal delivery of chemotherapy is the preferred route for PM treatment. The main limitation of the treatment options is the short residence time of the cytostatic, with subsequent short exposure of the cancer cells. To address this, a supramolecular hydrogel has been developed that allows both local and slow release of its encapsulated drug, mitomycin C (MMC) or cholesterol-conjugated MMC (cMMC), respectively. This experimental study investigates if drug delivery using this hydrogel improves the therapeutic efficacy against PM. PM was induced in WAG/Rij rats (n = 72) by intraperitoneally injecting syngeneic colon carcinoma cells (CC531) expressing luciferase. After seven days, animals received a single intraperitoneal injection with saline (n = 8), unloaded hydrogel (n = 12), free MMC (n = 13), free cMMC (n = 13), MMC-loaded hydrogel (n = 13), or cMMC-loaded hydrogel (n = 13). Primary outcome was overall survival with a maximum follow-up of 120 days. Intraperitoneal tumor development was non-invasive monitored via bioluminescence imaging. Sixty-one rats successfully underwent all study procedures and were included to assess therapeutic efficacy. After 120 days, the overall survival in the MMC-loaded hydrogel and free MMC group was 78% and 38%, respectively. A trend toward significance was found when comparing the survival curves of the MMC-loaded hydrogel and free MMC (p = 0.087). No survival benefit was found for the cMMC-loaded hydrogel compared to free cMMC. Treating PM with our MMC-loaded hydrogel, exhibiting prolonged MMC exposure, seems effective in improving survival compared to treatment with free MMC.</p

    Paneth Cell Alterations During Ischemia-reperfusion, Follow-up, and Graft Rejection After Intestinal Transplantation

    Get PDF
    BACKGROUND Ischemia-reperfusion (IR) injury is inevitable during intestinal transplantation (ITx) and executes a key role in the evolution towards rejection. Paneth cells (PC) are crucial for epithelial immune defense and highly vulnerable to IR injury. We investigated the effect of ITx on PC after reperfusion (T0), during follow-up, and rejection. Moreover, we investigated whether PC loss was associated with impaired graft homeostasis. METHODS Endoscopic biopsies, collected according to center-protocol and at rejection episodes, were retrospectively included (n=28 ITx, n=119 biopsies) Biopsies were immunohistochemically co-stained for PC (lysozyme) and apoptosis, and PC/crypt and lysozyme intensity were scored. RESULTS We observed a decrease in PC/crypt and lysozyme intensity in the first week after ITx (W1) compared to T0. There was a tendency towards a larger decline in PC/crypt (p=0.08) and lysozyme intensity (p=0.08) in W1 in patients who later developed rejection compared to patients without rejection. Follow-up biopsies showed that the PC number recovered, whereas lysozyme intensity remained reduced. This persisting innate immune defect may contribute to the well-known vulnerability of the intestine to infection. There was no clear evidence that PC were affected throughout rejection. CONCLUSION This study revealed a transient fall in PC numbers in the early post-ITx period, but a permanent reduction in lysozyme intensity following ITx. Further research is needed to determine the potential clinical impact of PC impairment after ITx

    Prophylactic Intra-Uterine β-Cyclodextrin Administration during Intra-Uterine Ureaplasma parvum Infection Partly Prevents Liver Inflammation without Interfering with the Enterohepatic Circulation of the Fetal Sheep

    Get PDF
    Chorioamnionitis can lead to inflammation and injury of the liver and gut, thereby predisposing patients to adverse outcomes such as necrotizing enterocolitis (NEC). In addition, intestinal bile acids (BAs) accumulation is causally linked to NEC development. Plant sterols are a promising intervention to prevent NEC development, considering their anti-inflammatory properties in the liver. Therefore, we investigated whether an intra-amniotic (IA) Ureaplasma parvum (UP) infection affected the liver and enterohepatic circulation (EHC) and evaluated whether an IA administered plant sterol mixture dissolved in β-cyclodextrin exerted prophylactic effects. An ovine chorioamnionitis model was used in which liver inflammation and the EHC were assessed following IA UP exposure in the presence or absence of IA prophylactic plant sterols (a mixture of β-sitosterol and campesterol dissolved in β-cyclodextrin (carrier)) or carrier alone. IA UP exposure caused an inflammatory reaction in the liver, histologically seen as clustered and conflated hepatic erythropoiesis in the parenchyma, which was partially prevented by IA administration of sterol + β-cyclodextrin, or β-cyclodextrin alone. In addition, IA administration of β-cyclodextrin prior to UP caused changes in the expression of several hepatic BAs transporters, without causing alterations in other aspects of the EHC. Thereby, the addition of plant sterols to the carrier β-cyclodextrin did not have additional effects
    corecore