39 research outputs found

    Postrelease exploration and diel activity of hatchery, wild, and hybrid strain brown trout in seminatural streams

    Get PDF
    Behaviour that is adaptive in captivity may be maladaptive in the wild and compromise postrelease survival of hatchery fish. The understanding of behavioural variation displayed immediately after release could help to improve hatchery protocols and development of behavioural tests for assessing the fitness of fish reared for releases. We characterized the postrelease behaviour of common-garden-raised offspring of wild resident, captive-bred migratory, and hybrid brown trout (Salmo trutta) in two experiments: in small artificial channels and in high and low densities in seminatural streams. The results from seminatural streams showed that hatchery fish were more likely to disperse downstream from the initial stocking site compared with hybrid and wild strain fish. The small-scale experiment did not reveal this ecologically pivotal difference in postrelease performance among strains, and individual responses were inconsistent between the experiments. Circadian activity patterns did not differ among strains. These detailed observations of postrelease behaviour reveal important intrinsic differences in dispersal traits among brown trout strains and suggest that selective breeding and crossbreeding can substantially affect these traits.Peer reviewe

    Fishing-induced versus natural selection in different brown trout (Salmo trutta) strains

    Get PDF
    Wild, adfluvial brown trout (Salmo trutta) are iconic targets in recreational fisheries but also endangered in many native locations. We compared how fishing and natural selection affect the fitness-proxies of brown trout from two pure angling-selected strains and experimental crosses between an adfluvial, hatchery-bred strain and three wild, resident strains. We exposed age 1+ parr to predation risk under controlled conditions where their behaviour was monitored with PIT-telemetry, and stocked age 2+ fish in two natural lakes for experimental fishing. Predation mortality (16% of the fish) was negatively size-dependent, while capture probability, also reflecting survival, in the lakes (38.9% of the fish) was positively length- and condition- dependent. Angling-induced selection against low boldness and slow growth rates relative to gillnet fishing indicated gear-dependent potential for fisheries-induced evolution in behaviours and life-histories. Offspring of wild, resident fish showed slower growth rates than the crossbred strains. Strain effects suggested significant heritable scope for artificial selection on life-history traits and demonstrated that choices of fish supplementation by stocking may override the genetic effects induced by angling.Peer reviewe

    Comparison of Migratory and Resident Populations of Brown Trout Reveals Candidate Genes for Migration Tendency

    Get PDF
    Candidate genes associated with migration have been identified in multiple taxa: including salmonids, many of whom perform migrations requiring a series of physiological changes associated with the freshwater-saltwater transition. We screened over 5,500 SNPs for signatures of selection related to migratory behavior of brown trout Salmo trutta by focusing on ten differentially migrating freshwater populations from two watersheds (the Koutajoki and the Oulujoki). We found eight outlier SNPs potentially associated with migratory versus resident life history using multiple (>= 3) outlier detection approaches. Comparison of three migratory versus resident population pairs in the Koutajoki watershed revealed seven outlier SNPs, of which three mapped close to genes ZNF665-like, GRM4-like, and PCDH8-like that have been previously associated with migration and smoltification in salmonids. Two outlier SNPs mapped to genes involved in mucus secretion (ST3GAL1-like) and osmoregulation (C14orf37-like). The last two strongly supported outlier SNPs mapped to thermally induced genes (FNTA1-like, FAM134C-like). Within the Oulujoki, the only consistent outlier SNP mapped close to a gene (EZH2) that is associated with compensatory growth in fasted trout. Our results suggest that a relatively small yet common set of genes responsible for physiological functions associated with resident and migratory life histories is evolutionarily conserved

    Comparing RADseq and microsatellites for estimating genetic diversity and relatedness - Implications for brown trout conservation

    Get PDF
    The conservation and management of endangered species requires information on their genetic diversity, relatedness and population structure. The main genetic markers applied for these questions are microsatellites and single nucleotide polymorphisms (SNPs), the latter of which remain the more resource demanding approach in most cases. Here, we compare the performance of two approaches, SNPs obtained by restriction-site-associated DNA sequencing (RADseq) and 16 DNA microsatellite loci, for estimating genetic diversity, relatedness and genetic differentiation of three, small, geographically close wild brown trout (Salmo trutta) populations and a regionally used hatchery strain. The genetic differentiation, quantified as F-ST, was similar when measured using 16 microsatellites and 4,876 SNPs. Based on both marker types, each brown trout population represented a distinct gene pool with a low level of interbreeding. Analysis of SNPs identified half- and full-siblings with a higher probability than the analysis based on microsatellites, and SNPs outperformed microsatellites in estimating individual-level multilocus heterozygosity. Overall, the results indicated that moderately polymorphic microsatellites and SNPs from RADseq agreed on estimates of population genetic structure in moderately diverged, small populations, but RADseq outperformed microsatellites for applications that required individual-level genotype information, such as quantifying relatedness and individual-level heterozygosity. The results can be applied to other small populations with low or moderate levels of genetic diversity.Peer reviewe

    Does parental angling selection affect the behavior or metabolism of brown trout parr?

    Get PDF
    The behavior of organisms can be subject to human-induced selection such as that arising from fishing. Angling is expected to induce mortality on fish with bold and explorative behavior, which are behaviors commonly linked to a high standard metabolic rate. We studied the transgenerational response of brown trout (Salmo trutta) to angling-induced selection by examining the behavior and metabolism of 1-year-old parr between parents that were or were not captured by experimental fly fishing. We performed the angling selection experiment on both a wild and a captive population, and compared the offspring for standard metabolic rate and behavior under predation risk in common garden conditions. Angling had population-specific effects on risk taking and exploration tendency, but no effects on standard metabolic rate. Our study adds to the evidence that angling can induce transgenerational responses on fish personality. However, understanding the mechanisms of divergent responses between the populations requires further study on the selectivity of angling in various conditions

    Association Mapping Based on a Common-Garden Migration Experiment Reveals Candidate Genes for Migration Tendency in Brown Trout

    Get PDF
    A better understanding of the environmental and genetic contribution to migratory behavior and the evolution of traits linked to migration is crucial for fish conservation and fisheries management. Up to date, a few genes with unequivocal influence on the adoption of alternative migration strategies have been identified in salmonids. Here, we used a common garden set-up to measure individual migration distances of generally highly polymorphic brown trout Salmo trutta from two populations. Fish from the assumedly resident population showed clearly shorter migration distances than the fish from the assumed migratory population at the ages of 2 and 3 years. By using two alternative analytical pipelines with 22186 and 18264 SNPs obtained through RAD-sequencing, we searched for associations between individual migration distance, and both called genotypes and genotype probabilities. None of the SNPs showed statistically significant individual effects on migration after correction for multiple testing. By choosing a less stringent threshold, defined as an overlap of the top 0.1% SNPs identified by the analytical pipelines, GAPIT and Angsd, we identified eight candidate genes that are potentially linked to individual migration distance. While our results demonstrate large individual and population level differences in migration distances, the detected genetic associations were weak suggesting that migration traits likely have multigenic control

    Comparing RADseq and microsatellites for estimating genetic diversity and relatedness Implications for brown trout conservation

    Get PDF
    The conservation and management of endangered species requires information on their genetic diversity, relatedness and population structure. The main genetic markers applied for these questions are microsatellites and single nucleotide polymorphisms (SNPs), the latter of which remain the more resource demanding approach in most cases. Here, we compare the performance of two approaches, SNPs obtained by restriction-site-associated DNA sequencing (RADseq) and 16 DNA microsatellite loci, for estimating genetic diversity, relatedness and genetic differentiation of three, small, geographically close wild brown trout (Salmo trutta) populations and a regionally used hatchery strain. The genetic differentiation, quantified as F-ST, was similar when measured using 16 microsatellites and 4,876 SNPs. Based on both marker types, each brown trout population represented a distinct gene pool with a low level of interbreeding. Analysis of SNPs identified half- and full-siblings with a higher probability than the analysis based on microsatellites, and SNPs outperformed microsatellites in estimating individual-level multilocus heterozygosity. Overall, the results indicated that moderately polymorphic microsatellites and SNPs from RADseq agreed on estimates of population genetic structure in moderately diverged, small populations, but RADseq outperformed microsatellites for applications that required individual-level genotype information, such as quantifying relatedness and individual-level heterozygosity. The results can be applied to other small populations with low or moderate levels of genetic diversity

    Let us pray to the lord : A Collection of Prayer From the eastern and Oriental Orthodox Trad...

    No full text
    Genevaxiii, 97 p.; 22 cm
    corecore