28 research outputs found

    Sustained Progression-Free Survival Benefit of Rituximab Maintenance in Patients With Follicular Lymphoma : Long-Term Results of the PRIMA Study

    Get PDF
    PURPOSE The PRIMA study (ClinicalTrials.gov identifier: NCT00140582) established that 2 years of rituximab maintenance after first-line immunochemotherapy significantly improved progression-free survival (PFS) in patients with follicular lymphoma compared with observation. Here, we report the final PFS and overall survival (OS) results from the PRIMA study after 9 years of follow-up and provide a final overview of safety. METHODS Patients (> 18 years of age) with previously untreated high-tumor-burden follicular lymphoma were nonrandomly assigned to receive one of three immunochemotherapy induction regimens. Responding patients were randomly assigned (stratified by induction regimen, response to induction treatment, treatment center, and geographic region) 1:1 to receive 2 years of rituximab maintenance (375 mg/m(2), once every 8 weeks), starting 8 weeks after the last induction treatment, or observation (no additional treatment). All patients in the extended follow-up provided their written informed consent (data cutoff: December 31, 2016). RESULTS In total, 1,018 patients completed induction treatment and were randomly assigned to rituximab maintenance (n = 505) or observation (n = 513). Consent for the extended follow-up was provided by 607 patients (59.6%) of 1,018 (rituximab maintenance, n = 309; observation, n = 298). After data cutoff, median PFS was 10.5 years in the rituximab maintenance arm compared with 4.1 years in the observation arm (hazard ratio, 0.61; 95% CI, 0.52 to 0.73; P <.001). No OS difference was seen in patients randomly assigned to rituximab maintenance or observation (hazard ratio, 1.04; 95% CI, 0.77 to 1.40; P = .7948); 10-year OS estimates were approximately 80% in both study arms. No new safety signals were observed. CONCLUSION Rituximab maintenance after induction immunochemotherapy provides a significant long-term PFS, but not OS, benefit over observation.Peer reviewe

    Partners in Crime: Towards New Ways of Targeting Calcium Channels

    No full text
    The characterization of calcium channel interactome in the last decades opened a new way of perceiving ion channel function and regulation. Partner proteins of ion channels can now be considered as major components of the calcium homeostatic mechanisms, while the reinforcement or disruption of their interaction with the channel units now represents an attractive target in research and therapeutics. In this review we will focus on the targeting of calcium channel partner proteins in order to act on the channel activity, and on its consequences for cell and organism physiology. Given the recent advances in the partner proteins&rsquo; identification, characterization, as well as in the resolution of their interaction domain structures, we will develop the latest findings on the interacting proteins of the following channels: voltage-dependent calcium channels, transient receptor potential and ORAI channels, and inositol 1,4,5-trisphosphate receptor

    PSA reduces prostate cancer cell motility by stimulating TRPM8 activity and plasma membrane expression.

    No full text
    International audienceAlthough the transient receptor potential melastatin 8 (TRPM8) cold receptor is highly expressed in prostate cancer (PCa) and constitutes a promising diagnostic and prognostic indicator, the natural agonists of this channel in the prostate, as well as its physiological and pathological functions, remain unknown. In this study, we identified the well-known PCa marker, prostate-specific antigen (PSA), as a physiological TRPM8 agonist. Electrophysiological and Ca(2+) imaging studies demonstrated that PSA activated TRPM8-mediated current by the bradykinin 2 receptor signaling pathway. Further investigation of this mechanism by cell-surface biotinylation revealed that the increase in TRPM8 current induced by PSA was due to an increase in the number of functional TRPM8 channels on the plasma membrane. Importantly, wound-healing and migration assays revealed that TRPM8 activation by PSA reduced motility of the PC3 PCa cell line, suggesting that plasma membrane TRPM8 has a protective role in PCa progression. Consequently, PSA was identified as a natural TRPM8 agonist in the prostate and we propose a putative physiological role for both of these proteins in carcinogenesis, making this pathway a potentially important target for anticancer agent development.Oncogene advance online publication, 7 June 2010; doi:10.1038/onc.2010.210

    Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells.

    No full text
    The one or more coupling mechanisms of store-operated channels (SOCs) to endoplasmic reticulum (ER) Ca2+ store depletion as well as the molecular identity of SOCs per se still remain a mystery. Here, we demonstrate the co-existence of two populations of molecular distinct endogenous SOCs in LNCaP prostate cancer epithelial cells, which are preferentially activated by either active inositol 1,4,5-trisphosphate (IP3)-mediated or passive thapsigargin-facilitated store depletion and have different ER store content sensitivity. The first population, called SOC(CC) (for "conformational coupling"), is characterized by preferential IP3 receptor-dependent mode of activation, as judged from sensitivity to cytoskeleton modifications, and dominant contribution of transient receptor potential (TRP) TRPC1 within it. The second one, called SOC(CIF) (for "calcium influx factor"), depends on Ca(2+)-independent phospholipase A2 for activation with probable CIF involvement and is mostly represented by TRPC4. The previously identified SOC constituent in LNCaP cells, TRPV6, seems to play equal role in both SOC populations. These results provide new insight into the nature of SOCs and their representation in the single cell type as well as permit reconciliation of current SOC activation hypotheses

    Prospects for prostate cancer imaging and therapy using high-affinity TRPM8 activators.

    No full text
    One of the best-studied temperature-gated channels is transient receptor potential melastatin 8 (TRPM8), which is activated by cold and cooling agents, such as menthol. Besides inducing a cooling sensation in sensory neurons, TRPM8 channel activation also plays a major role in physiopathology. Indeed, TRPMP8 expression increases in early stages of prostate cancer and its involvement in prostate cell apoptosis has recently been demonstrated. Thus, as TRPM8 is a tumor marker with significant potential use in diagnosis, as well as a target for cancer therapy, there is a need for new TRPM8-specific ligands. In this study, we investigated the action of "WS" compounds on TRPM8 channels. We compared the affinity of these molecules to that of menthol and icilin. This enabled us to identify new TRPM8 agonists. The menthol analog with the highest affinity, WS-12, had an EC(50) value about 2000 times lower than that of menthol and is, therefore, the highest-affinity TRPM8 ligand known to date. Finally, incorporating a fluorine atom in the WS-12 retained 75% of the activity of the parent compound. The high affinity of this new TRPM8 ligand and the possibility of incorporating a radiohalogen could thus be useful for diagnosis, monitoring and, perhaps, even therapy of prostate cancer.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Functional and Modeling Studies of the Transmembrane Region of the TRPM8 Channel

    Get PDF
    International audienceMembers of the transient receptor potential (TRP) ion channel family act as polymodal cellular sensors, which aid in regulating Ca 2Ăľ homeostasis. Within the TRP family, TRPM8 is the cold receptor that forms a nonselective homotetrameric cation channel. In the absence of TRPM8 crystal structure, little is known about the relationship between structure and function. Inferences of TRPM8 structure have come from mutagenesis experiments coupled to electrophysiology, mainly regarding the fourth transmembrane helix (S4), which constitutes a moderate voltage-sensing domain, and about cold sensor and phosphatidylinositol 4,5-bisphosphate binding sites, which are both located in the C-terminus of TRPM8. In this study, we use a combination of molecular modeling and experimental techniques to examine the structure of the TRPM8 transmembrane and pore helix region including the conducting conformation of the selectivity filter. The model is consistent with a large amount of functional data and was further tested by mutagenesis. We present structural insight into the role of residues involved in intra-and intersubunit interactions and their link with the channel activity, sensitivity to icilin, menthol and cold, and impact on channel oligomerization

    Alpha1-adrenergic receptors activate Ca(2+)-permeable cationic channels in prostate cancer epithelial cells.

    No full text
    The prostate gland is a rich source of alpha1-adrenergic receptors (alpha1-ARs). alpha1-AR antagonists are commonly used in the treatment of benign prostatic hyperplasia symptoms, due to their action on smooth muscle cells. However, virtually nothing is known about the role of alpha1-ARs in epithelial cells. Here, by using two human prostate cancer epithelial (hPCE) cell models - primary cells from resection specimens (primary hPCE cells) and an LNCaP (lymph node carcinoma of the prostate) cell line - we identify an alpha1A subtype of adrenergic receptor (alpha1A-AR) and show its functional coupling to plasmalemmal cationic channels via direct diacylglycerol (DAG) gating. In both cell types, agonist-mediated stimulation of alpha1A-ARs and DAG analogues activated similar cationic membrane currents and Ca(2+) influx. These currents were sensitive to the alpha1A-AR antagonists, prazosin and WB4101, and to transient receptor potential (TRP) channel blockers, 2-aminophenyl borate and SK&F 96365. Chronic activation of alpha1A-ARs enhanced LNCaP cell proliferation, which could be antagonized by alpha1A-AR and TRP inhibitors. Collectively, our results suggest that alpha1-ARs play a role in promoting hPCE cell proliferation via TRP channels

    ORAI3 silencing alters cell proliferation and promotes mitotic catastrophe and apoptosis in pancreatic adenocarcinoma.

    No full text
    International audienceChanges in cytosolic free Ca2+ concentration play a central role in many fundamental cellular processes including muscle contraction, neurotransmission, cell proliferation, differentiation, gene transcription and cell death. Many of these processes are known to be regulated by store-operated calcium channels (SOCs), among which ORAI1 is the most studied in cancer cells, leaving the role of other ORAI channels yet inadequately addressed. Here we demonstrate that ORAI3 channels are expressed in both normal (HPDE) and pancreatic ductal adenocarcinoma (PDAC) cell lines, where they form functional channels, their knockdown affecting store operated calcium entry (SOCE). More specifically, ORAI3 silencing increased SOCE in PDAC cell lines, while decreasing SOCE in normal pancreatic cell line. We also show the role of ORAI3 in proliferation, cell cycle, viability, mitotic catastrophe and cell death. Finally, we demonstrate that ORAI3 silencing impairs pancreatic tumor growth and induces cell death in vivo, suggesting that ORAI3 could represent a potential therapeutic target in PDAC treatment
    corecore