27 research outputs found

    Vehicle Speed Prediction using Deep Learning

    Full text link
    Global optimization of the energy consumption of dual power source vehicles such as hybrid electric vehicles, plug-in hybrid electric vehicles, and plug in fuel cell electric vehicles requires knowledge of the complete route characteristics at the beginning of the trip. One of the main characteristics is the vehicle speed profile across the route. The profile will translate directly into energy requirements for a given vehicle. However, the vehicle speed that a given driver chooses will vary from driver to driver and from time to time, and may be slower, equal to, or faster than the average traffic flow. If the specific driver speed profile can be predicted, the energy usage can be optimized across the route chosen. The purpose of this paper is to research the application of Deep Learning techniques to this problem to identify at the beginning of a drive cycle the driver specific vehicle speed profile for an individual driver repeated drive cycle, which can be used in an optimization algorithm to minimize the amount of fossil fuel energy used during the trip

    Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial

    Full text link
    This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore