7 research outputs found

    SND@LHC: The Scattering and Neutrino Detector at the LHC

    Get PDF
    SND@LHC is a compact and stand-alone experiment designed to perform measurements with neutrinos produced at the LHC in the pseudo-rapidity region of 7.2<η<8.4{7.2 < \eta < 8.4}. The experiment is located 480 m downstream of the ATLAS interaction point, in the TI18 tunnel. The detector is composed of a hybrid system based on an 830 kg target made of tungsten plates, interleaved with emulsion and electronic trackers, also acting as an electromagnetic calorimeter, and followed by a hadronic calorimeter and a muon identification system. The detector is able to distinguish interactions of all three neutrino flavours, which allows probing the physics of heavy flavour production at the LHC in the very forward region. This region is of particular interest for future circular colliders and for very high energy astrophysical neutrino experiments. The detector is also able to search for the scattering of Feebly Interacting Particles. In its first phase, the detector will operate throughout LHC Run 3 and collect a total of 250 fb−1\text{fb}^{-1}

    Measurement of lepton universality parameters in B+→K+ℓ+ℓ−B^+\to K^+\ell^+\ell^- and B0→K∗0ℓ+ℓ−B^0\to K^{*0}\ell^+\ell^- decays

    Get PDF
    A simultaneous analysis of the B+→K+ℓ+ℓ−B^+\to K^+\ell^+\ell^- and B0→K∗0ℓ+ℓ−B^0\to K^{*0}\ell^+\ell^- decays is performed to test muon-electron universality in two ranges of the square of the dilepton invariant mass, q2q^2. The measurement uses a sample of beauty meson decays produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 99 fb−1\text{fb}^{-1}. A sequence of multivariate selections and strict particle identification requirements produce a higher signal purity and a better statistical sensitivity per unit luminosity than previous LHCb lepton universality tests using the same decay modes. Residual backgrounds due to misidentified hadronic decays are studied using data and included in the fit model. Each of the four lepton universality measurements reported is either the first in the given q2q^2 interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-045.html (LHCb public pages

    Test of lepton universality in b→sℓ+ℓ−b \rightarrow s \ell^+ \ell^- decays

    Get PDF
    The first simultaneous test of muon-electron universality using B+→K+ℓ+ℓ−B^{+}\rightarrow K^{+}\ell^{+}\ell^{-} and B0→K∗0ℓ+ℓ−B^{0}\rightarrow K^{*0}\ell^{+}\ell^{-} decays is performed, in two ranges of the dilepton invariant-mass squared, q2q^{2}. The analysis uses beauty mesons produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9 fb−1\mathrm{fb}^{-1}. Each of the four lepton universality measurements reported is either the first in the given q2q^{2} interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-046.html (LHCb public pages

    Test of lepton universality in b→sℓ+ℓ− decays

    Get PDF
    The first simultaneous test of muon-electron universality using B + → K + ℓ + ℓ − and B 0 → K * 0 ℓ + ℓ − decays is performed, in two ranges of the dilepton invariant-mass squared, q 2 . The analysis uses beauty mesons produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9     fb − 1 . Each of the four lepton universality measurements reported is either the first in the given q 2 interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model

    Measurement of lepton universality parameters in B plus ? K plus l + l - and B0? K?0l+l- decays

    Get PDF
    A simultaneous analysis of the B+→K+l+l- and B0→K∗0l+l- decays is performed to test muon-electron universality in two ranges of the square of the dilepton invariant mass, q2. The measurement uses a sample of beauty meson decays produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9 fb-1. A sequence of multivariate selections and strict particle identification requirements produce a higher signal purity and a better statistical sensitivity per unit luminosity than previous LHCb lepton universality tests using the same decay modes. Residual backgrounds due to misidentified hadronic decays are studied using data and included in the fit model. Each of the four lepton universality measurements reported is either the first in the given q2 interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model

    Test of Lepton Universality in b → sl+ l- Decays

    Get PDF
    The first simultaneous test of muon-electron universality using B+→K+l+l- and B0→K∗0l+l- decays is performed, in two ranges of the dilepton invariant-mass squared, q2. The analysis uses beauty mesons produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9 fb-1. Each of the four lepton universality measurements reported is either the first in the given q2 interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model

    Measurement of lepton universality parameters in <math display="inline"><msup><mi>B</mi><mo>+</mo></msup><mo stretchy="false">→</mo><msup><mi>K</mi><mo>+</mo></msup><msup><mo>ℓ</mo><mo>+</mo></msup><msup><mo>ℓ</mo><mo>-</mo></msup></math> and <math display="inline"><msup><mi>B</mi><mn>0</mn></msup><mo stretchy="false">→</mo><msup><mi>K</mi><mrow><mo>*</mo><mn>0</mn></mrow></msup><msup><mo>ℓ</mo><mo>+</mo></msup><msup><mo>ℓ</mo><mo>-</mo></msup></math> decays

    Get PDF
    International audienceA simultaneous analysis of the B+→K+ℓ+ℓ- and B0→K*0ℓ+ℓ- decays is performed to test muon-electron universality in two ranges of the square of the dilepton invariant mass, q2. The measurement uses a sample of beauty meson decays produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9  fb-1. A sequence of multivariate selections and strict particle identification requirements produce a higher signal purity and a better statistical sensitivity per unit luminosity than previous LHCb lepton universality tests using the same decay modes. Residual backgrounds due to misidentified hadronic decays are studied using data and included in the fit model. Each of the four lepton universality measurements reported is either the first in the given q2 interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model
    corecore