2,010 research outputs found

    人格(パースナリティー)理論に就いて

    Get PDF
    The aim of this study was to evaluate the ability of new rubbery liners, used as a cervical increment, to relieve contraction stress and thereby reduce the formation of cervical gaps in class II composite restorations. The investigated liners were made of polyester-acrylate (PE(1), PE(2) or PE(3)) or silicone-acrylate (S), mixed with UDMA, without (A, B, C, D) or with HEMA (AH, BH, CH, DH). A silanized filler was added to the mixture, DH, to give composites with 20, 40, 60, and 70% (w/w) of filler (DHF20, DHF40, DHF60, DHF70, respectively). The presence and width of cervical gaps were determined using a light microscope. Statistical analysis showed that six of the 12 rubbery liners (AH-DH, DHF20-DHF40) significantly decreased gap formation in comparison with the control group. In addition, the polymerization shrinkage, flow, and strain capacity of these liners were measured and the influence of these factors on gap formation was examined. Two- and three-dimensional regression analyses showed significantly negative linear correlations between gap formation and strain capacity, and between gap formation and flow, and a significantly positive linear correlation between gap formation and shrinkage

    Enhanced Hypothalamic Glucose Sensing in Obesity: Alteration of Redox Signaling

    Get PDF
    1939-327X (Electronic) Journal articleObjective : Recent data demonstrate that glucose sensing in different tissues is initiated by an intracellular redox-signaling pathway in physiological conditions. However, the relevance of such a mechanism in metabolic disease is not known. The aim of the present study was to determine whether brain-glucose hypersensitivity present in obese Zucker rat is related to an alteration in redox signaling. Research design and Methods: Brain glucose sensing alteration was investigated in vivo through the evaluation of electrical activity in arcuate nucleus, changes in ROS levels, and hypothalamic glucose-induced insulin secretion. In basal conditions, modifications of redox state and mitochondrial function were assessed through oxidized glutathione, glutathione peroxidase, manganese superoxide dismutase, aconitase activities and mitochondrial respiration. Results : Hypothalamic hypersensitivity to glucose was characterized by enhanced electrical activity of the arcuate nucleus and increased insulin secretion at a low glucose concentration, which does not produce such an effect in normal rats. It was associated with 1) increased ROS levels in response to this low glucose load, 2) constitutive oxidized environment coupled with lower antioxidant enzyme activity at both the cellular and mitochondrial level, and 3) over-expression of several mitochondrial subunits of the respiratory chain coupled with a global dysfunction in mitochondrial activity. Moreover, pharmacological restoration of the glutathione hypothalamic redox state by reduced-glutathione infusion in the third ventricle fully reversed the cerebral hypersensitivity to glucose. Conclusions : Altogether, these data demonstrate that obese Zucker rats' impaired hypothalamic regulation in terms of glucose sensing is linked to an abnormal redox signaling, which originates from mitochondria dysfunction

    Brain Glucagon-Like Peptide-1 Regulates Arterial Blood Flow, Heart Rate, and Insulin Sensitivity

    Get PDF
    OBJECTIVE— To ascertain the importance and mechanisms underlying the role of brain glucagon-like peptide (GLP)-1 in the control of metabolic and cardiovascular function. GLP-1 is a gut hormone secreted in response to oral glucose absorption that regulates glucose metabolism and cardiovascular function. GLP-1 is also produced in the brain, where its contribution to central regulation of metabolic and cardiovascular homeostasis remains incompletely understood

    Hybrid modeling of biological networks: mixing temporal and qualitative biological properties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modeling a dynamical biological system is often a difficult task since the a <it>priori </it>unknown parameters of such models are not always directly given by the experiments. Despite the lack of experimental quantitative knowledge, one can see a dynamical biological system as (i) the combined evolution tendencies (increase or decrease) of the biological compound concentrations, and: (ii) the temporal features, such as delays between two concentration peaks (i.e. the times when one of the components completes an increase (resp. decrease) phase and starts a decrease (resp. increase) phase).</p> <p>Results</p> <p>We propose herein a new hybrid modeling framework that follows such biological assumptions. This hybrid approach deals with both a qualitative structure of the system and a quantitative structure. From a theoretical viewpoint, temporal specifications are expressed as equality or inequality constraints between delay parameters, while the qualitative specifications are expressed as an ordered pattern of the concentrations peaks of the components. Using this new hybrid framework, the temporal specifications of a biological system can be obtained from incomplete experimental data. The model may be processed by a hybrid model-checker (e.g. Phaver) which is able to give some new constraints on the delay parameters (e.g. the delay for a given transition is exactly 5 hours after the later peak of a gene product concentration). Furthermore, by using a constraint solver on the previous results, it becomes possible to get the set of parameters settings which are consistent with given specifications. Such a modeling approach is particularly accurate for modeling oscillatory biological behaviors like those observed in the Drosophila circadian cycles. The achieved results concerning the parameters of this oscillatory system formally confirm the several previous studies made by numerical simulations. Moreover, our analysis makes it possible to propose an automatic investigation of the respective impact of per and tim on the circadian cycle.</p> <p>Conclusions</p> <p>A new hybrid technique for an automatic formal analysis of biological systems is developed with a special emphasis on their oscillatory behaviors. It allows the use of incomplete and empirical biological data.</p

    Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri

    Get PDF
    The development of systemic approaches in biology has put emphasis on identifying genetic modules whose behavior can be modeled accurately so as to gain insight into their structure and function. However most gene circuits in a cell are under control of external signals and thus quantitative agreement between experimental data and a mathematical model is difficult. Circadian biology has been one notable exception: quantitative models of the internal clock that orchestrates biological processes over the 24-hour diurnal cycle have been constructed for a few organisms, from cyanobacteria to plants and mammals. In most cases, a complex architecture with interlocked feedback loops has been evidenced. Here we present first modeling results for the circadian clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock genes have been shown to play a central role in Ostreococcus clock. We find that their expression time profiles can be accurately reproduced by a minimal model of a two-gene transcriptional feedback loop. Remarkably, best adjustment of data recorded under light/dark alternation is obtained when assuming that the oscillator is not coupled to the diurnal cycle. This suggests that coupling to light is confined to specific time intervals and has no dynamical effect when the oscillator is entrained by the diurnal cycle. This intringuing property may reflect a strategy to minimize the impact of fluctuations in daylight intensity on the core circadian oscillator, a type of perturbation that has been rarely considered when assessing the robustness of circadian clocks

    Reinforcing the role of the conventional C-arm - a novel method for simplified distal interlocking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. A new concept is introduced utilizing information from within conventional radiographic images to help accurately guide the surgeon to place the interlocking bolt into the interlocking hole. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure.</p> <p>Methods</p> <p>The proposed concept (guided freehand), generally based on the freehand gold standard, additionally guides the surgeon by means of visible landmarks projected into the C-arm image. A computer program plans the correct drilling trajectory by processing the lens-shaped hole projections of the interlocking holes from a single image. Holes can be drilled by visually aligning the drill to the planned trajectory. Besides a conventional C-arm, no additional tracking or navigation equipment is required.</p> <p>Ten fresh frozen human below-knee specimens were instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland). The implants were distally locked by performing the newly proposed technique as well as the conventional freehand technique on each specimen. An orthopedic resident surgeon inserted four distal screws per procedure. Operating time, number of images and radiation time were recorded and statistically compared between interlocking techniques using non-parametric tests.</p> <p>Results</p> <p>A 58% reduction in number of taken images per screw was found for the guided freehand technique (7.4 ± 3.4) (mean ± SD) compared to the freehand technique (17.6 ± 10.3) (<it>p </it>< 0.001). Total radiation time (all 4 screws) was 55% lower for the guided freehand technique compared to conventional freehand (<it>p </it>= 0.001). Operating time per screw (from first shot to screw tightened) was on average 22% reduced by guided freehand (<it>p </it>= 0.018).</p> <p>Conclusions</p> <p>In an experimental setting, the newly developed guided freehand technique for distal interlocking has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method utilizes established clinical workflows and does not require cost intensive add-on devices or extensive training. The underlying principle carries potential to assist implant positioning in numerous other applications within orthopedics and trauma from screw insertions to placement of plates, nails or prostheses.</p
    corecore