28 research outputs found

    Uncoupling of Satellite DNA and Centromeric Function in the Genus Equus

    Get PDF
    In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs

    Early-life telomere dynamics differ between the sexes and predict growth in the barn swallow (Hirundo rustica)

    Get PDF
    Telomeres are conserved DNA-protein structures at the termini of eukaryotic chromosomes which contribute to maintenance of genome integrity, and their shortening leads to cell senescence, with negative consequences for organismal functions. Because telomere erosion is influenced by extrinsic and endogenous factors, telomere dynamics may provide a mechanistic basis for evolutionary and physiological trade-offs. Yet, knowledge of fundamental aspects of telomere biology under natural selection regimes, including sex- and context-dependent variation in early-life, and the covariation between telomere dynamics and growth, is scant. In this study of barn swallows (Hirundo rustica) we investigated the sex-dependent telomere erosion during nestling period, and the covariation between relative telomere length and body and plumage growth. Finally, we tested whether any covariation between growth traits and relative telomere length depends on the social environment, as influenced by sibling sex ratio. Relative telomere length declined on average over the period of nestling maximal growth rate (between 7 and 16 days of age) and differently covaried with initial relative telomere length in either sex. The frequency distribution of changes in relative telomere length was bimodal, with most nestlings decreasing and some increasing relative telomere length, but none of the offspring traits predicted the a posteriori identified group to which individual nestlings belonged. Tail and wing length increased with relative telomere length, but more steeply in males than females, and this relationship held both at the within- and among-broods levels. Moreover, the increase in plumage phenotypic values was steeper when the sex ratio of an individual's siblings was female-biased. Our study provides evidence for telomere shortening during early life according to subtly different dynamics in either sex. Furthermore, it shows that the positive covariation between growth and relative telomere length depends on sex as well as social environment, in terms of sibling sex ratio

    New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining

    No full text
    The non-homologous end-joining (NHEJ) pathway is a mechanism to repair DNA double strand breaks, which can introduce mutations at repair sites. We constructed new cellular systems to specifically analyze sequence modifications occurring at the repair site. In particular, we looked for the presence of telomeric repeats at the repair junctions, since our previous work indicated that telomeric sequences could be inserted at break sites in germ-line cells during primate evolution. To induce specific DNA breaks, we used the I-SceI system of Saccharomyces cerevisiae or digestion with restriction enzymes. We isolated human and hamster cell lines containing the I-SceI target site integrated in a single chromosomal locus and we exposed the cells to a continuous expression of the I-SceI endonuclease gene. Additionally, we isolated human cell lines that expressed constitutively the I-SceI endonuclease and we introduced the target site on an episomal plasmid stably transfected into the cells. These strategies allowed us to recover repair junctions in which the I-SceI target site was modified at high frequency (100% in hamster cells and about 70% in human cells). Finally, we analyzed junctions produced on an episomal plasmid linearized by restriction enzymes. In all the systems studied, sequence analysis of individual repair junctions showed that deletions were the most frequent modifications, being present in more than 80% of the junctions. On the episomal plasmids, the average deletion length was greater than at intrachromosomal sites. Insertions of nucleotides or deletions associated with insertions were rare events. Junction organization suggested different mechanisms of formation. To check for the insertion of telomeric sequences, we screened plasmid libraries representing about 3.5 x 10(5) junctions with a telomeric repeat probe. No positive clones were detected, suggesting that the addition of telomeric sequences during double strand break repair in somatic cells in culture is either a very rare event or does not occur at all

    Discovery and Comparative Analysis of a Novel Satellite, EC137, in Horses and Other Equids

    No full text
    Centromeres are the sites of kinetochore assembly and spindle fiber attachment and consist of protein-DNA complexes in which the DNA component is typically characterized by the presence of extended arrays of tandem repeats called satellite DNA. Here, we describe the isolation and characterization of a 137-bp-long new satellite DNA sequence from the horse genome (EC137), which is also present, even if less abundant, in the domestic donkey, the Grevy's zebra and the Burchelli's zebra. We investigated the chromosomal distribution of the EC137 sequence in these 4 species. Moreover, we analyzed its architectural organization by high-resolution FISH. The position of this sequence with respect to the primary constriction and in relation to the 2 major horse satellite tandem repeats (37 cen and 2PI) on horse chromosomes suggests that the new centromeric equine satellite is an accessory DNA element, presumably contributing to the organization of pericentromeric chromatin. FISH on combed DNA fibers reveals that the EC137 satellite is organized in relatively short stretches (2-8 kb) which are strictly intermingled within 37 cen or 2PI arrays. This arrangement suggests that interchanges between satellite families are a frequent occurrence in the horse genome

    Data from: Brood size, telomere length, and parent-offspring color signaling in barn swallows

    No full text
    Trade-offs select for optimal allocation of resources among competing functions. Parents are selected to maximize production of viable offspring by balancing between progeny number and “quality.” Telomeres are nucleoproteins, at the ends of eukaryotic chromosomes, that shorten when cells divide. Because shortening below a certain threshold depresses organismal functioning and rate of shortening depends on environmental conditions, telomeres are good candidates as mediators of trade-offs. We altered brood size of barn swallow Hirundo rustica and found that brood enlargement caused a reduction in relative telomere length (RTL). Reliable signals of offspring quality should evolve that mediate adaptive parental care allocation. Because nestlings with darker coloration receive more care, we analyzed the covariation between RTL and coloration and found that RTL increased with plumage darkness, both within and between broods. Hence, we provide unprecedented evidence that signals relevant to parent-offspring communication reflect telomere length and thus offspring reproductive value

    Yolk vitamin E prevents oxidative damage in gull hatchlings

    No full text
    Oxidative stress experienced during early development can negatively affect diverse life-history traits, and organisms have evolved complex defence systems against its detrimental effects. Bird eggs contain maternally derived exogenous antioxidants that play a major role in embryo protection from oxidative damage, including the negative effects on telomere dynamics. In this study on the yellow-legged gull (Larus michahellis), we manipulated the concentration of vitamin E (VE) in the egg yolk and analysed the consequences on oxidative status markers and telomere length in the hatchlings. This study provides the first experimental evidence that, contrary to the expectation, a physiological increase in yolk VE concentration boosted total antioxidant capacity and reduced the concentration of pro-oxidant molecules in the plasma, but did not reduce telomere attrition or ameliorate oxidative damage to proteins and lipids in the early postnatal period
    corecore