119 research outputs found

    Geo-neutrinos and Earth Models

    Get PDF
    We present the current status of geo-neutrino measurements and their implications for radiogenic heating in the mantle. Earth models predict different levels of radiogenic heating and, therefore, different geo-neutrino fluxes from the mantle. Seismic tomography reveals features in the deep mantle possibly correlated with radiogenic heating and causing spatial variations in the mantle geo-neutrino flux at the Earth surface. An ocean-based observatory offers the greatest sensitivity to the mantle flux and potential for resolving Earth models and mantle features. Refinements to estimates of the geo-neutrino flux from continental crust reduce uncertainty in measurements of the mantle flux, especially measurements from land-based observatories. These refinements enable the resolution of Earth models using the combined measurements from multiple continental observatories.Comment: 9 pages, 4 figures; Contributed paper TAUP 201

    Seismic detection of the martian core by InSight

    Get PDF
    A plethora of geophysical, geo- chemical, and geodynamical observations indicate that the terrestrial planets have differentiated into silicate crusts and mantles that surround a dense core. The latter consists primarily of Fe and some lighter alloying elements (e.g., S, Si, C, O, and H) [1]¿. The Martian meteorites show evidence of chalcophile element depletion, suggesting that the otherwise Fe-Ni- rich core likely contains a sulfide component, which influences physical state

    The Far Side of Mars: Two Distant Marsquakes Detected by InSight

    Get PDF
    For over three Earth years the Marsquake Service has been analyzing the data sent back from the Seismic Experiment for Interior Structure¿the seismometer placed on the surface of Mars by NASA¿s InSight lander. Although by October 2021, the Mars seismic catalog included 951 events, until recently all these events have been assessed as lying within a radius of 100° of InSight. Here we report two distant events that occurred within days of each other, located on the far side of Mars, giving us our first glimpse into Mars¿ core shadow zone. The first event, recorded on 25 August 2021 (InSight sol 976), shows clear polarized arrivals that we interpret to be PP and SS phases at low frequencies and locates to Valles Marineris, 146° ± 7° from InSight. The second event, occurring on 18 September 2021 (sol 1000), has significantly more broadband energy with emergent PP and SS arrivals, and a weak phase arriving before PP that we interpret as Pdiff¿. Considering uncertain pick times and poorly constrained travel times for Pdiff¿, we estimate this event is at a distance between 107° and 147° from InSight. With magnitudes of MMaw 4.2 and 4.1, respectively, these are the largest seismic events recorded so far on Mars.Anna C. Horleston, Jessica C. E. Irving,and Nicholas A. Teanby are funded by the UKSA under Grant Numbers ST/R002096/1, ST/W002523/1, and ST/W002515/1.Nikolaj L. Dahmen, Cecilia Duran, Géraldine Zenhäusern, andSimon C. Stähler would like to acknowledge support from Eidgenössische Technische Hochschule (ETH) through the ETH+ funding scheme (ETH+02 19-1: “Planet Mars”). The French coauthors acknowledge the funding support provided by CNES and the Agence Nationale de la Recherche (ANR-19-CE31-0008-08 MAGIS) for SEIS operation and SEIS Science analysis. Alexander E. Stott acknowledges the French Space Agency CNES and ANR (ANR-19-CE31-0008-08). Caroline Beghein and Jiaqi Li were supported by NASA InSight Participating Scientist Program (PSP) Grant Number 80NSSC18K1679. This article is InSight Contribution Number 236

    Seismic detection of the martian core

    Get PDF
    Clues to a planet's geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 +/- 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight's location covers half the surface of Mars, including the majority of potentially active regions-e.g., Tharsis-possibly limiting the number of detectable marsquakes.This is InSight contribution 200. We acknowledge NASA, CNES, and partner agencies and institutions (UKSA, SSO, ESA-PRODEX, DLR, JPL, IPGP-CNRS, ETHZ, IC, and MPS-MPG) for the development of SEIS. Numerical simulations were supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s922 as well as HPC resources of CINES under the allocation A0090407341, made by GENCI. We thank B. Dintrans, director of CINES, for his efficient handling of our request for computational time. Figures were created using matplotlib (83), seismic data processing was done in ObsPy (84), and numerical evaluation was done in NumPy and SciPy (85, 86). Funding: S.C.S., A.K., D.G., J.C., A.C.D., G.Z., and N.D. acknowledge support from ETHZ through the ETH+ funding scheme (ETH+2 19-1: “Planet MARS”). S.C.S. acknowledges funding from ETH research grant ETH-10 17-3. W.B.B., A.G.M., M.P.P., and S.E.S. were supported by the NASA InSight mission and funds from the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). D.A. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 724690). The French teams acknowledge support from CNES as well as Agence Nationale de la Recherche (ANR-14-CE36-0012-02 and ANR-19-CE31-0008-08). A.R. was financially supported by the Belgian PRODEX program managed by the European Space Agency in collaboration with the Belgian Federal Science Policy Office. M.S. wishes to thank SANIMS (RTI2018-095594-B-I00). M.v.D. received support from the ERC under the European Union’s Horizon 2020 program (grant no. 714069). D.S. and C.S. acknowledge funding from ETH research grant ETH-06 17-02. J.C.E.I. acknowledges support from NASA grant 80NSSC18K1633. N.S., D.K., Q.H., R.M., V.L., and A.G.M. acknowledge NASA grant 80NSSC18K1628 for support. V.L. acknowledges support from the Packard Foundation. W.T.P. and C.C. received funding from the UK Space Agency, grant ST/S001239/1. A.H. was funded by the UK Space Agency (grant ST/R002096/1). A.-C.P. acknowledges the financial support and endorsement from the DLR Management Board Young Research Group Leader Program and the Executive Board Member for Space Research and Technology. Author contributions: S.C.S., D.G., S.C., R.F.G., Q.H., D.K., V.L., M.S., N.S., D.S., É.S., C.S., and G.Z. analyzed the seismic data and made ScS arrival time picks. S.C.S., P.L., D.G., Z.X., C.C., and W.T.P. performed the statistical analysis of the observed signals. S.C.S., Q.H., N.S., R.M., and A.G.M. identified the arrivals as ScS waves based on interior models from A.K., H.S., and A.R. A.K., M.D., A.C.D., and H.S. performed the inversions. S.C.S., A.K., P.L., D.G., D.A., J.C.E.I., M.K., C.P., A.-C.P., A.R., T.G., and S.E.S. participated and contributed to the interpretation of the results. Review of the continuous data and detection of marsquakes was done by S.C.S., S.C., G.Z., C.C., N.D., J.C., M.v.D., T.K., M.P., and A.H. with operational support by É.B., C.P., and P.M.D. S.C.S. and A.K. wrote the central part of the paper with contributions from H.S., N.S., D.A., J.C.E.I., A.G.M., A.-C.P., A.R., J.C., and M.v.D. J.C.E.I., R.M., M.K., and V.L. reviewed the contributions to the supplementary materials. The InSight mission is managed by W.B.B., M.P.P., and S.E.S. The SEIS instrument development was led by P.L., D.G., W.T.P., and W.B.B. Supplementary section 1 was written by M.S., D.S., and É.S. with contributions from S.C.S., C.S., and Z.X. Supplementary section 2 was written by D.K. and V.L. with contributions from J.C.E.I. and N.S. Supplementary section 3 was written by M.S. and É.S. Supplementary section 4 was written by R.F.G. with contributions from M.D. Supplementary section 5 was written by Q.H. with contributions from N.S. Supplementary section 6 was written by S.C.S. with contributions from the authors of the other supplements. Supplementary section 7 was written by Z.X. and C.C. with contributions from P.L. and W.T.P. Supplementary section 8 was written by A.K., M.D., A.C.D., and H.S. Supplementary section 9 was written by M.D. Supplementary section 10 was written by A.C.D., A.K., and M.D. Supplementary section 11 was written by D.A. and A.R. with contributions from A.K. Competing interests: The authors declare that they have no competing interests. Data and materials availability: We thank the operators of JPL, SISMOC, MSDS, IRIS-DMC, and PDS for providing SEED SEIS data (87). Three hundred interior models derived in this study are available from MSDS (88)

    Surface waves and crustal structure on Mars

    Get PDF
    We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.D.K., S.C., D.G., J.C., C.D., A. K., S.C.S., N.D., and G.Z. were supported by the ETH+ funding scheme (ETH+02 19-1: “Planet Mars”). Marsquake Service operations at ETH Zürich were supported by ETH Research grant ETH-06 17-02. N.C.S. and V.L. were supported by NASA PSP grant no. 80NSSC18K1628. Q.H. and E.B. are funded by NASA grant 80NSSC18K1680. C.B. and J.L. were supported by NASA InSight PSP grant no. 80NSSC18K1679. S.D.K. was supported by NASA InSight PSP grant no. 80NSSC18K1623. P.L., E.B., M.D., H.S., E.S., M.W., Z.X., T.W., M.P., R.F.G. were supported by CNES and the Agence Nationale de la Recherche (ANR-19-CE31-0008-08 MAGIS) for SEIS operation and SEIS Science analysis. A.H., C.C. and W.T.P. were supported by the UKSA under grant nos. ST/R002096/1, ST/ W002523/1 and ST/V00638X/1. Numerical computations of McMC Approach 2 were performed on the S-CAPAD/DANTE platform (IPGP, France) and using the HPC resources of IDRIS under the allocation A0110413017 made by GENCI. A.H. was supported by the UKSA under grant nos. ST/R002096/1 and ST/W002523/1. F.N. was supported by InSight PSP 80NSSC18K1627. I.J.D. was supported by NASA InSight PSP grant no. 80NSSC20K0971. L.V.P. was funded by NASANNN12AA01C with subcontract JPL-1515835. The research was carried out in part by W.B.B., M.G. and M.P.P. at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004)Peer reviewe

    Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue.</p> <p>Methods</p> <p>Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels.</p> <p>Results</p> <p>Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p < 0.05) expression in ONJ-adjacent periodontal tissue. ONJ tissue also exhibited decreased relative gene expression for Msx-1 (p < 0.03) and RANKL (p < 0.03) and increased BMP-2/4 expression (p < 0.02) compared to control.</p> <p>Conclusions</p> <p>These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred exclusively jaw remodelling. Further research on developmental biology-related unique features of jaw bone structures will help to elucidate pathologies restricted to maxillofacial tissue.</p

    Effects of enamel matrix derivative and transforming growth factor-β1 on human osteoblastic cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD), TGF-β1, and the combination of both factors (EMD+TGF-β1) on human osteoblastic cell cultures.</p> <p>Methods</p> <p>Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP), osteopontin (OPN) and alkaline phosphatase (ALP) immunodetection, total protein synthesis, ALP activity and bone-like nodule formation.</p> <p>Results</p> <p>All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group.</p> <p>Conclusions</p> <p>The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors <it>in vitro </it>supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.</p

    The interior of Mars as seen by InSight (Invited)

    Get PDF
    InSight is the first planetary mission dedicated to exploring the whole interior of a planet using geophysical methods, specifically seismology and geodesy. To this end, we observed seismic waves of distant marsquakes and inverted for interior models using differential travel times of phases reflected at the surface (PP, SS...) or the core mantle-boundary (ScS), as well as those converted at crustal interfaces. Compared to previous orbital observations1-3, the seismic data added decisive new insights with consequences for the formation of Mars: The global average crustal thickness of 24-75 km is at the low end of pre-mission estimates5. Together with the the thick lithosphere of 450-600 km5, this requires an enrichment of heat-producing elements in the crust by a factor of 13-20, compared to the primitive mantle. The iron-rich liquid core is 1790-1870 km in radius6, which rules out the existence of an insulating bridgmanite-dominated lower mantle on Mars. The large, and therefore low-density core needs a high amount of light elements. Given the geochemical boundary conditions, Sulfur alone cannot explain the estimated density of ~6 g/cm3 and volatile elements, such as oxygen, carbon or hydrogen are needed in significant amounts. This observation is difficult to reconcile with classical models of late formation from the same material as Earth. We also give an overview of open questions after three years of InSight operation on the surface of Mars, such as the potential existence of an inner core or compositional layers above the CM

    Autocorrelation of the Ground Vibrations Recorded by the SEIS‐InSight Seismometer on Mars

    Get PDF
    Since early February 2019, the SEIS (Seismic Experiment for Interior Structure) seismometer deployed at the surface of Mars in the framework of the InSight mission has been continuously recording the ground motion at Elysium Planitia. In this study, we take advantage of this exceptional data set to put constraints on the crustal properties of Mars using seismic interferometry (SI). To carry out this task, we first examine the continuous records from the very broadband seismometer. Several deterministic sources of environmental noise are identified and specific preprocessing strategies are presented to mitigate their influence. Applying the principles of SI to the single-station configuration of InSight, we compute, for each Sol and each hour of the martian day, the diagonal elements of the time-domain correlation tensor of random ambient vibrations recorded by SEIS. A similar computation is performed on the diffuse waveforms generated by more than a hundred Marsquakes. A careful signal- to-noise ratio analysis and an inter-comparison between the two datasets suggest that the results from SI are most reliable in a narrow frequency band around 2.4 Hz, where an amplification of both ambient vibrations and seismic events is observed. The average autocorrelation functions (ACFs) contain well identifiable seismic arrivals, that are very consistent between the two datasets. Interpreting the vertical and horizontal ACFs as, respectively, the P- and S- seismic reflectivity below InSight, we propose a simple stratified velocity model of the crust, which is mostly compatible with previous results from receiver function analysis. Our results are discussed and compared to recent works from the literature
    corecore