957 research outputs found

    The Effect of Processing Route on Properties of HfNbTaTiZr High Entropy Alloy

    Get PDF
    High entropy alloys (HEA) have been one of the most attractive groups of materials for researchers in the last several years. Since HEAs are potential candidates for many (e.g., refractory, cryogenic, medical) applications, their properties are studied intensively. The most frequent method of HEA synthesis is arc or induction melting. Powder metallurgy is a perspective technique of alloy synthesis and therefore in this work the possibilities of synthesis of HfNbTaTiZr HEA from powders were studied. Blended elemental powders were sintered, hot isostatically pressed, and subsequently swaged using a special technique of swaging where the sample is enveloped by a titanium alloy. This method does not result in a full density alloy due to cracking during swaging. Spark plasma sintering (SPS) of mechanically alloyed powders resulted in a fully dense but brittle specimen. The most promising result was obtained by SPS treatment of gas atomized powder with low oxygen content. The microstructure of HfNbTaTiZr specimen prepared this way can be refined by high pressure torsion deformation resulting in a high hardness of 410 HV10 and very fine microstructure with grain size well below 500 nm.11Ysciescopu

    Clozapine-induced agranulocytosis is associated with rare HLA-DQB1 and HLA-B alleles

    Get PDF
    Clozapine is a particularly effective antipsychotic medication but its use is curtailed by the risk of clozapine-induced agranulocytosis/granulocytopenia (CIAG), a severe adverse drug reaction occurring in up to 1% of treated individuals. Identifying genetic risk factors for CIAG could enable safer and more widespread use of clozapine. Here we perform the largest and most comprehensive genetic study of CIAG to date by interrogating 163 cases using genomewide genotyping and whole-exome sequencing. We find that two loci in the major histocompatibility complex are independently associated with CIAG: a single amino acid in HLA-DQB1 (126Q) (P = 4.7 x 10(-14), odds ratio (OR) = 0.19, 95% confidence interval (CI) = 0.12-0.29) and an amino acid change in the extracellular binding pocket of HLA-B (158T) (P = 6.4 x 10(-10), OR = 3.3, 95% CI = 2.3-4.9). These associations dovetail with the roles of these genes in immunogenetic phenotypes and adverse drug responses for other medications, and provide insight into the pathophysiology of CIAG

    Detection of Salivary Tryptase Levels in Children following Oral Food Challenges

    Get PDF
    BACKGROUND: Oral food challenge (OFC) is commonly used to diagnose food allergy. This test is time and resource intensive, and conclusions are not always unequivocal as this relies on the interpretation of symptoms. Therefore, an objective marker would improve the accuracy of the diagnostic workup of food allergy. OBJECTIVES: The aim of this study was to investigate whether tryptase can be detected in saliva of children following OFC. METHOD: Children from 3 to 18 years of age were eligible for inclusion if an OFC for peanut or tree nut had been recommended. Saliva samples were collected prior to the first dose and 5, 10, and 15 min following the last administered dose during OFC. Assay precision, spike-and-recovery, and assessment of lower limit of detection of the tryptase immunoassay were examined before analysis of tryptase in saliva was performed. RESULTS: A total of 30 children were included (median age 8 years, 63.3% male, 53.3% positive OFC outcome). Tryptase was detected in saliva samples. The mean of the change in baseline tryptase value to each saliva collecting time point was significantly different in patients with a positive OFC outcome compared to a negative outcome (p < 0.01). CONCLUSIONS: This study showed that tryptase can be detected in saliva of children following OFC. Increased levels of tryptase compared to baseline were found if the OFC outcome was positive, suggesting that measuring tryptase in saliva may be useful in the diagnosis of food allergy. Further research is needed to evaluate the potential association between tryptase levels and symptoms

    Inflammatory monocyte gene expression:Trait or state marker in bipolar disorder?

    Get PDF
    BACKGROUND: This study aimed to examine whether inflammatory gene expression was a trait or a state marker in patients with bipolar disorder (BD). METHODS: 69 healthy controls (HC), 82 euthymic BD patients and 8 BD patients with a mood episode (7 depressed, 1 manic) were included from the MOODINFLAME study. Six of the eight patients who had a mood episode were also investigated when they were euthymic (6 of the 82 euthymic patients). Of these participants the expression of 35 inflammatory genes was determined in monocytes using quantitative-polymerase chain reaction, of which a total gene expression score was calculated as well as a gene expression score per sub-cluster. RESULTS: There were no significant differences in inflammatory monocyte gene expression between healthy controls and euthymic patients. Patients experiencing a mood episode, however, had a significantly higher total gene expression score (10.63 ± 2.58) compared to healthy controls (p = .004) and euthymic patients (p = .009), as well as when compared to their own scores when they were euthymic (p = .02). This applied in particular for the sub-cluster 1 gene expression score, but not for the sub-cluster 2 gene expression score. CONCLUSIONS: Our study indicates that in BD inflammatory monocyte, gene expression is especially elevated while in a mood episode compared to being euthymic

    Molecular profiling of signet ring cell colorectal cancer provides a strong rationale for genomic targeted and immune checkpoint inhibitor therapies

    Get PDF
    We would like to thank all patients whose samples were used in this study. We are also thankful to the Northern Ireland Biobank and Grampian Biorepository for providing us with tissue blocks and patient data; and Dr HG Coleman (Queen’s University Belfast) for her advice on statistical analyses. This work has been carried out with financial support from Cancer Research UK (grant: C11512/A18067), Experimental Cancer Medicine Centre Network (grant: C36697/A15590 from Cancer Research UK and the NI Health and Social Care Research and Development Division), the Sean Crummey Memorial Fund and the Tom Simms Memorial Fund. The Northern Ireland Biobank is funded by HSC Research and Development Division of the Public Health Agency in Northern Ireland and Cancer Research UK through the Belfast CRUK Centre and the Northern Ireland Experimental Cancer Medicine Centre; additional support was received from Friends of the Cancer Centre. The Northern Ireland Molecular Pathology Laboratory which is responsible for creating resources for the Northern Ireland Biobank has received funding from Cancer Research UK, Friends of the Cancer Centre and Sean Crummey Foundation.Peer reviewedPublisher PD

    Comparing mutation calls in fixed tumour samples between the Affymetrix OncoScan® Array and PCR based next-generation sequencing

    Get PDF
    Background: The importance of accurate and affordable mutation calling in fixed pathology samples is becoming increasingly important as we move into the era of personalised medicine. The Affymetrix OncoScan® Array platform is designed to produce actionable mutation calls in archival material. Methods: We compared calls made using the OncoScan platform with calls made using a custom designed PCR panel followed by next-generation sequencing (NGS), in order to benchmark the sensitivity and specificity of the OncoScan calls in a large cohort of fixed tumour samples. 392 fixed, clinical samples were sequenced, encompassing 641 PCR regions, 403 putative positive calls and 1528 putative negative calls. Results: A small number of mutations could not be validated, either due to large indels or pseudogenes impairing parts of the NGS pipeline. For the remainder, if calls were filtered according to simple quality metrics, both sensitivity and specificity for the OncoScan platform were over 98%. This applied even to samples with poorer sample quality and lower variant allele frequency (5–10%) than product claims indicated. Conclusions: This benchmarking study will be useful to users and potential users of this platform, who wish to compare technologies or interpret their own results

    Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.

    Get PDF
    Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD

    Centers For Mendelian Genomics: a Decade of Facilitating Gene Discovery

    Get PDF
    PURPOSE: Mendelian disease genomic research has undergone a massive transformation over the past decade. With increasing availability of exome and genome sequencing, the role of Mendelian research has expanded beyond data collection, sequencing, and analysis to worldwide data sharing and collaboration. METHODS: Over the past 10 years, the National Institutes of Health-supported Centers for Mendelian Genomics (CMGs) have played a major role in this research and clinical evolution. RESULTS: We highlight the cumulative gene discoveries facilitated by the program, biomedical research leveraged by the approach, and the larger impact on the research community. Beyond generating a list of gene-phenotype relationships and participating in widespread data sharing, the CMGs have created resources, tools, and training for the larger community to foster understanding of genes and genome variation. The CMGs have participated in a wide range of data sharing activities, including deposition of all eligible CMG data into the Analysis, Visualization, and Informatics Lab-space (AnVIL), sharing candidate genes through the Matchmaker Exchange and the CMG website, and sharing variants in Genotypes to Mendelian Phenotypes (Geno2MP) and VariantMatcher. CONCLUSION: The work is far from complete; strengthening communication between research and clinical realms, continued development and sharing of knowledge and tools, and improving access to richly characterized data sets are all required to diagnose the remaining molecularly undiagnosed patients

    High-Coverage Whole-Exome Sequencing Identifies Candidate Genes for Suicide in Victims with Major Depressive Disorder

    Get PDF
    We carried out whole-exome ultra-high throughput sequencing in brain samples of suicide victims who had suffered from major depressive disorder and control subjects who had died from other causes. This study aimed to reveal the selective accumulation of rare variants in the coding and the UTR sequences within the genes of suicide victims. We also analysed the potential effect of STR and CNV variations, as well as the infection of the brain with neurovirulent viruses in this behavioural disorder. As a result, we have identified several candidate genes, among others three calcium channel genes that may potentially contribute to completed suicide. We also explored the potential implication of the TGF-β signalling pathway in the pathogenesis of suicidal behaviour. To our best knowledge, this is the first study that uses whole-exome sequencing for the investigation of suicide
    corecore