99 research outputs found

    Evidence on Anti-malarial and Diagnostic Markets in Cambodia to Guide Malaria Elimination Strategies and Policies

    Get PDF
    BACKGROUND: Understanding Cambodia\u27s anti-malarial and diagnostic landscape in 2015 is critical for informing and monitoring strategies and policies as Cambodia moves forward with national efforts to eliminate malaria. The aim of this paper is to present timely and key findings on the public and private sector anti-malarial and diagnostic landscape in Cambodia. This evidence can serve as a baseline benchmark for guiding implementation of national strategies as well as other regional initiatives to address malaria elimination activities. METHODS: From August 17th to October 1st, 2015, a cross sectional, nationally-representative malaria outlet survey was conducted in Cambodia. A census of all public and private outlets with potential to distribute malaria testing and/or treatment was conducted among 180 communes. An audit was completed for all anti-malarials, malaria rapid diagnostic tests (RDT) and microscopy. RESULTS: A total of 26,664 outlets were screened, and 1303 outlets were eligible and interviewed. Among all screened outlets in the public sector, 75.9% of public health facilities and 67.7% of community health workers stocked both malaria diagnostic testing and a first-line artemisinin-based combination therapy (ACT). Among anti-malarial-stocking private sector outlets, 64.7% had malaria blood testing available, and 70.9% were stocking a first-line ACT. Market share data illustrate that most of the anti-malarials were sold or distributed through the private sector (58.4%), including itinerant drug vendors (23.4%). First-line ACT accounted for the majority of the market share across the public and private sectors (90.3%). Among private sector outlets stocking any anti-malarial, the proportion of outlets with a first-line ACT or RDT was higher among outlets that had reportedly received one or more forms of \u27support\u27 (e.g. reportedly received training in the previous year on malaria diagnosis [RDT and/or microscopy] and/or the national treatment guidelines for malaria) compared to outlets that did not report receiving any support (ACT: 82.1 and 60.6%, respectively; RDT: 78.2 and 64.0%, respectively). CONCLUSION: The results point to high availability and distribution of first-line ACT and widespread availability of malaria diagnosis, especially in the public sector. This suggests that there is a strong foundation for achieving elimination goals in Cambodia. However, key gaps in terms of availability of malaria commodities for case management must be addressed, particularly in the private sector where most people seek treatment. Continued engagement with the private sector will be important to ensure accelerated progress towards malaria elimination

    Village malaria workers for the community-based management of vivax malaria

    Get PDF
    In Cambodia, malaria cases are on a trajectory towards the goal of malaria elimination by 2025. Vivax malaria is difficult to eliminate because of hypnozoites that can cause relapse. Primaquine, an 8-aminoquinoline, clears hypnozoites but requires testing for glucose-6-phosphate dehydrogenase (G6PD) deficiency. Routine primaquine treatment of vivax malaria has recently been implemented in Cambodia in which Village Malaria Workers (VMWs) diagnose vivax malaria by rapid diagnostic test and refer patients to health centres for G6PD testing and further treatment. Patients are referred back to the VMWs for monitoring adverse symptoms and treatment adherence. This article explores how VMWs’ roles might be optimized for the community-based management of vivax malaria. With sufficient training and supervision, the role of VMWs might be expanded to include G6PD testing, making referral to the health centre superfluous. Community-based management of vivax malaria could increase the coverage of radical cure and accelerate vivax malaria elimination

    High mobility, low access thwarts interventions among seasonal workers in the Greater Mekong Sub-region: lessons from the malaria containment project

    Get PDF
    Background: During the process of malaria elimination in the Greater Mekong Sub-region, mobile and migrant populations (MMPs) have been identified as the most at-risk demographic. An important sub-group of MMPs are seasonal workers, and this paper presents an evaluation of the reach and effectiveness of interventions tailored towards this group and was carried out as part of the Containment Project from 2009-11. Methods: A mixed-methods study was conducted in Pailin Province in Western Cambodia. Three-hundred-and-four seasonal workers were surveyed using a structured questionnaire. Qualitative data were gathered through a total of eight focus group discussions and 14 in-depth interviews. Data triangulation of the qualitative and quantitative data was used during analysis. Results: High mobility and low access of the target population to the interventions, as well as lack of social and anthropological research that led to implementation oversights, resulted in under-exposure of seasonal workers to interventions. Consequently, their reach and impact were severely limited. Some services, particularly Mobile Malaria Workers, had the ability to significantly impact key factors, such as risky behaviours among those they did reach. Others, like Listening and Viewing Clubs and mass media campaigns, showed little impact. Conclusions: There is potential in two of the interventions assessed, but high mobility and inadequate exposure of seasonal workers to these interventions must be considered in the development and planning of future interventions to avoid investing in low-impact activities and ensure that all interventions perform according to their maximum potential. This will be critical in order for Cambodia to achieve its aim of malaria elimination. The lessons learned from this study can be extrapolated to other areas of health care in Cambodia and other countries in order to reduce the gap between healthcare provided to MMPs, especially seasonal workers, and to the general population

    Asia-Pacific International Center of Excellence in Malaria Research: Maximizing Impact on Malaria Control Policy and Public Health in Cambodia and Papua New Guinea

    Get PDF
    The Asia-Pacific International Center of Excellence in Malaria Research (ICEMR) was funded in 2016 to conduct a coordinated set of field and in-depth biological studies in Cambodia and Papua New Guinea (PNG), in sites that span the range of transmission intensities currently found in the Asia-Pacific regions. The overall objective is to gain an understanding of key parasite, human host, and vector factors involved in maintaining transmission in the face of intensified control and elimination programs, and to develop novel approaches to identify and target residual transmission foci. In this article, we will describe how the ICEMR program was designed to address key knowledge gaps and priority areas for the malaria control programs in each country. In PNG, partners have worked together on two consecutive ICEMR grants (2009-2016 and 2017-2024) and we present a case study of the partnership and engagement approach that has led to stronger coordination of research activities and integration with program, informing country-level strategic planning and prioritization of control activities. In both settings, the ICEMR program has generated insights into transmission foci, risk factors for ongoing transmission, highlighting the hidden burden of vivax malaria, and the need for additional complementary vector control tools. Finally, we will summarize the emerging research questions and priority areas-namely surveillance, vivax malaria, new vector control tools, and community/health systems-oriented approaches-where further tool development and implementation research have been identified as being needed to guide policy

    Assessment in vitro of the antimalarial and transmission-blocking activities of cipargamin and ganaplacide in artemisinin-resistant Plasmodium falciparum

    Get PDF
    Artemisinin resistance in Plasmodium falciparum has emerged and spread widely in the Greater Mekong Subregion, threatening current first-line artemisinin combination treatments. New antimalarial drugs are needed urgently. Cipargamin (KAE609) and ganaplacide (KAF156) are promising novel antimalarial compounds in advanced stages of development. Both compounds have potent asexual blood stage activities, inhibit P. falciparum gametocytogenesis, and reduce oocyst development in anopheline mosquitoes. In this study, we compared the asexual and sexual stage activities of cipargamin, ganaplacide, and artesunate in artemisinin-resistant P. falciparum isolates (n = 6; K13 mutations C580Y, G449A, and R539T) from Thailand and Cambodia. Asexual blood stage antimalarial activity was evaluated in a SYBR-green I-based 72-h in vitro assay, and the effects on male and female mature stage V gametocytes were assessed in the P. falciparum dual gamete formation assay. Ganaplacide had higher activities than cipargamin and artesunate, with mean (standard deviation [SD]) 50% inhibitory concentrations (IC50s) against asexual stages of 5.6 (1.2) nM and 6.9 (3.8) nM for male gametocytes and 47.5 (54.7) nM for female gametocytes. Cipargamin had a similar potency against male and female gametocytes, with mean (SD) IC50s of 115.6 (66.9) nM for male gametocytes, 104.9 (84.3) nM for female gametocytes, and 2.4 (0.7) nM for asexual stages. Both cipargamin and ganaplacide showed significant transmission-blocking activities against artemisinin-resistant P. falciparum in vitro

    Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia

    Get PDF
    Background: Western Cambodia is recognized as the epicentre of emergence of Plasmodium falciparum multi-drug resistance. The emergence of artemisinin resistance has been observed in this area since 2008–2009 and molecular signatures associated to artemisinin resistance have been characterized in k13 gene. At present, one of the major threats faced, is the possible spread of Asian artemisinin resistant parasites over the world threatening millions of people and jeopardizing malaria elimination programme efforts. To anticipate the diffusion of artemisinin resistance, the identification of the P. falciparum population structure and the gene flow among the parasite population in Cambodia are essential. Methods: To this end, a mid-throughput PCR-LDR-FMA approach based on LUMINEX technology was developed to screen for genetic barcode in 533 blood samples collected in 2010–2011 from 16 health centres in malaria endemics areas in Cambodia. Results: Based on successful typing of 282 samples, subpopulations were characterized along the borders of the country. Each 11-loci barcode provides evidence supporting allele distribution gradient related to subpopulations and gene flow. The 11-loci barcode successfully identifies recently emerging parasite subpopulations in western Cambodia that are associated with the C580Y dominant allele for artemisinin resistance in k13 gene. A subpopulation was identified in northern Cambodia that was associated to artemisinin (R539T resistant allele of k13 gene) and mefloquine resistance. Conclusions: The gene flow between these subpopulations might have driven the spread of artemisinin resistance over Cambodia

    A youth advisory group on health and health research in rural Cambodia

    Get PDF
    Engaging young people in health research has been promoted globally. We explored the outcomes of youth advisory group on health and research engagement (YAGHRE) in rural Cambodia. In May 2021, the Mahidol Oxford Tropical Medicine Research Unit (MORU) partnered with a local health centre and a secondary school to establish a youth engagement group. Ten students underwent training and led health engagement activities in schools and communities. Activities were documented as field notes and audio-visual materials which underwent content analysis using theory of change supplemented by iterative discussions with YAGHRE members and stakeholders. Five major outcomes were identified: 1. Increased respect. Engagement activities developed based on input from students and stakeholders may have fostered greater respect. 2. Built trust and relationships. Frequent visits to MORU’s laboratory and interactions with researchers appeared to contribute to the building of trust and relationship. 3. Improved health and research literacy. Learning new health and research topics, through participatory activities may have improved literacy; 4. Improved uptake of health and research interventions. Health promotional activities and communication with research participants potentially increased the uptake of interventions; 5. Improved community health. YAGHRE’s health promotional interventions may have contributed in enhancing community’s health

    Activity of Ivermectin and Its Metabolites against Asexual Blood Stage Plasmodium falciparum and Its Interactions with Antimalarial Drugs

    Get PDF
    Ivermectin is an endectocide used widely to treat a variety of internal and external parasites. Field trials of ivermectin mass drug administration for malaria transmission control have demonstrated a reduction of Anopheles mosquito survival and human malaria incidence. Ivermectin will mostly be deployed together with artemisinin-based combination therapies (ACT), the first-line treatment of falciparum malaria. It has not been well established if ivermectin has activity against asexual stage Plasmodium falciparum or if it interacts with the parasiticidal activity of other antimalarial drugs. This study evaluated antimalarial activity of ivermectin and its metabolites in artemisinin-sensitive and artemisinin-resistant P. falciparum isolates and assessed in vitro drug-drug interaction with artemisinins and its partner drugs. The concentration of ivermectin causing half of the maximum inhibitory activity (IC50) on parasite survival was 0.81 μM with no significant difference between artemisinin-sensitive and artemisinin-resistant isolates (P = 0.574). The ivermectin metabolites were 2-fold to 4-fold less active than the ivermectin parent compound (P &lt; 0.001). Potential pharmacodynamic drug-drug interactions of ivermectin with artemisinins, ACT-partner drugs, and atovaquone were studied in vitro using mixture assays providing isobolograms and derived fractional inhibitory concentrations. There were no synergistic or antagonistic pharmacodynamic interactions when combining ivermectin and antimalarial drugs. In conclusion, ivermectin does not have clinically relevant activity against the asexual blood stages of P. falciparum. It also does not affect the in vitro antimalarial activity of artemisinins or ACT-partner drugs against asexual blood stages of P. falciparum.</p

    Glucose-6-phosphate dehydrogenase (G6PD) measurement using biosensors by community-based village Malaria workers and hospital laboratory staff in Cambodia: a quantitative study

    Get PDF
    Vivax malaria can relapse after an initial infection due to dormant liver stages of the parasite. Radical cure can prevent relapses but requires the measurement of glucose-6-phosphate dehydrogenase enzyme (G6PD) activity to identify G6PD-deficient patients at risk of drug-induced haemolysis. In the absence of reliable G6PD testing, vivax patients are denied radical curative treatment in many places, including rural Cambodia. A novel Biosensor, ‘G6PD Standard’ (SD Biosensor, Republic of Korea; Biosensor), can measure G6PD activity at the point of care. The objectives of this study were to compare the G6PD activity readings using Biosensors by village malaria workers (VMWs) and hospital-based laboratory technicians (LTs), and to compare the G6PD deficiency categorization recommended by the Biosensor manufacturer with categories derived from a locally estimated adjusted male median (AMM) in Kravanh district, Cambodia. Participants were enrolled between 2021 and 2022 in western Cambodia. Each of the 28 VMWs and 5 LTs received a Biosensor and standardized training on its use. The G6PD activities of febrile patients identified in the community were measured by VMWs; in a subset, a second reading was done by LTs. All participants were tested for malaria by rapid diagnostic test (RDT). The adjusted male median (AMM) was calculated from all RDT-negative participants and defined as 100% G6PD activity. VMWs measured activities in 1344 participants. Of that total, 1327 (98.7%) readings were included in the analysis, and 68 of these had a positive RDT result. We calculated 100% activity as 6.4 U/gHb (interquartile range: 4.5 to 7.8); 9.9% (124/1259) of RDT-negative participants had G6PD activities below 30%, 15.2% (191/1259) had activities between 30% and 70%, and 75.0% (944/1259) had activities greater than 70%. Repeat measurements among 114 participants showed a significant correlation of G6PD readings (rs = 0.784, p < 0.001) between VMWs and LTs. Based on the manufacturer’s recommendations, 285 participants (21.5%) had less than 30% activity; however, based on the AMM, 132 participants (10.0%) had less than 30% activity. The G6PD measurements by VMWs and LTs were similar. With the provisions of training, supervision, and monitoring, VMWs could play an important role in the management of vivax malaria, which is critical for the rapid elimination of malaria regionally. Definitions of deficiency based on the manufacturer’s recommendations and the population-specific AMM differed significantly, which may warrant revision of these recommendations
    • …
    corecore