37 research outputs found

    Solid-solid phase equilibria in the NaCl-KCl system

    Get PDF
    Solid solutions, structurally ordered but compositionally disordered mixtures, can form for salts, metals, and even organic compounds. The NaCl-KCl system forms a solid solution at all compositions between 657 °C and 505 °C. Below a critical temperature of 505 °C, the system exhibits a miscibility gap with coexisting Na-rich and K-rich rocksalt phases. We calculate the phase diagram in this region using the semi-grand canonical Widom method, which averages over virtual particle transmutations. We verify our results by comparison with free energies calculated from thermodynamic integration and extrapolate the location of the critical point. Our calculations reproduce the experimental phase diagram remarkably well and illustrate how solid-solid equilibria and chemical potentials, including those at metastable conditions, can be computed for materials that form solid solutions

    Low-regret climate change adaptation in coastal megacities – evaluating large-scale flood protection and small-scale rainwater detention measures for Ho Chi Minh City, Vietnam

    Get PDF
    Urban flooding is a major challenge for many megacities in low-elevation coastal zones (LECZs), especially in Southeast Asia. In these regions, the effects of environmental stressors overlap with rapid urbanization, which significantly aggravates the hazard potential. Ho Chi Minh City (HCMC) in southern Vietnam is a prime example of this set of problems and therefore a suitable case study to apply the concept of low-regret disaster risk adaptation as defined by the Intergovernmental Panel on Climate Change (IPCC). In order to explore and evaluate potential options of hazard mitigation, a hydro-numerical model was employed to scrutinize the effectiveness of two adaptation strategies: (1) a classic flood protection scheme including a large-scale ring dike as currently constructed in HCMC and (2) the widespread installation of small-scale rainwater detention as envisioned in the framework of the Chinese Sponge City Program (SCP). A third adaptation scenario (3) assesses the combination of both approaches (1) and (2). From a hydrological point of view, the reduction in various flood intensity proxies that were computed within this study suggests that large-scale flood protection is comparable but slightly more effective than small-scale rainwater storage: for instance, the two adaptation options could reduce the normalized flood severity index (INFS), which is a measure combining flood depth and duration, by 17.9 % and 17.7 %, respectively. The number of flood-prone manufacturing firms that would be protected after adaptation, in turn, is nearly 2 times higher for the ring dike than for the Sponge City approach. However, the numerical results also reveal that both response options can be implemented in parallel, not only without reducing their individual effectiveness but also complementarily with considerable added value. Additionally, from a governance perspective, decentralized rainwater storage conforms ideally to the low-regret paradigm: while the existing large-scale ring dike depends on a binary commitment (to build or not to build), decentralized small- and micro-scale solutions can be implemented gradually (for example through targeted subsidies) and add technical redundancy to the overall system. In the end, both strategies are highly complementary in their spatial and temporal reduction in flood intensity. Local decision-makers may hence specifically seek combined strategies, adding to singular approaches, and design multi-faceted adaptation pathways in order to successfully prepare for a deeply uncertain future.</p

    Local and global Fokker-Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal

    Full text link
    In transport barriers, particularly H-mode edge pedestals, radial scale lengths can become comparable to the ion orbit width, causing neoclassical physics to become radially nonlocal. In this work, the resulting changes to neoclassical flow and current are examined both analytically and numerically. Steep density gradients are considered, with scale lengths comparable to the poloidal ion gyroradius, together with strong radial electric fields sufficient to electrostatically confine the ions. Attention is restricted to relatively weak ion temperature gradients (but permitting arbitrary electron temperature gradients), since in this limit a delta-f (small departures from a Maxwellian distribution) rather than full-f approach is justified. This assumption is in fact consistent with measured inter-ELM H-Mode edge pedestal density and ion temperature profiles in many present experiments, and is expected to be increasingly valid in future lower collisionality experiments. In the numerical analysis, the distribution function and Rosenbluth potentials are solved for simultaneously, allowing use of the exact field term in the linearized Fokker-Planck collision operator. In the pedestal, the parallel and poloidal flows are found to deviate strongly from the best available conventional neoclassical prediction, with large poloidal variation of a different form than in the local theory. These predicted effects may be observable experimentally. In the local limit, the Sauter bootstrap current formulae appear accurate at low collisionality, but they can overestimate the bootstrap current near the plateau regime. In the pedestal ordering, ion contributions to the bootstrap and Pfirsch-Schluter currents are also modified

    Calculation of the bootstrap current profile for the TJ-II stellarator

    Full text link
    Calculations of the bootstrap current for the TJ-II stellarator are presented. DKES and NEO-MC codes are employed; the latter has allowed, for the first time, the precise computation of the bootstrap transport coefficient in the long mean free path regime of this device. The low error bars allow a precise convolution of the monoenergetic coefficients, which is confirmed by error analysis. The radial profile of the bootstrap current is presented for the first time for the 100_44_64 configuration of TJ-II for three different collisionality regimes. The bootstrap coefficient is then compared to that of other configurations of TJ-II regularly operated. The results show qualitative agreement with toroidal current measurements; precise comparison with real discharges is ongoing

    On the NASA GEDI and ESA CCI biomass maps: aligning for uptake in the UNFCCC global stocktake

    Get PDF
    Earth Observation data are uniquely positioned to estimate forest aboveground biomass density (AGBD) in accordance with the United Nations Framework Convention on Climate Change (UNFCCC) principles of 'transparency, accuracy, completeness, consistency and comparability'. However, the use of space-based AGBD maps for national-level reporting to the UNFCCC is nearly non-existent as of 2023, the end of the first global stocktake (GST). We conduct an evidence-based comparison of AGBD estimates from the NASA Global Ecosystem Dynamics Investigation and ESA Climate Change Initiative, describing differences between the products and National Forest Inventories (NFIs), and suggesting how science teams must align efforts to inform the next GST. Between the products, in the tropics, the largest differences in estimated AGBD are primarily in the Congolese lowlands and east/southeast Asia. Where NFI data were acquired (Peru, Mexico, Lao PDR and 30 regions of Spain), both products show strong correlation to NFI-estimated AGBD, with no systematic deviations. The AGBD-richest stratum of these, the Peruvian Amazon, is accurately estimated in both. These results are remarkably promising, and to support the operational use of AGB map products for policy reporting, we describe targeted ways to align products with Intergovernmental Panel on Climate Change (IPCC) guidelines. We recommend moving towards consistent statistical terminology, and aligning on a rigorous framework for uncertainty estimation, supported by the provision of open-science codes for large-area assessments that comprehensively report uncertainty. Further, we suggest the provision of objective and open-source guidance to integrate NFIs with multiple AGBD products, aiming to enhance the precision of national estimates. Finally, we describe and encourage the release of user-friendly product documentation, with tools that produce AGBD estimates directly applicable to the IPCC guideline methodologies. With these steps, space agencies can convey a comparable, reliable and consistent message on global biomass estimates to have actionable policy impact

    Diverse anthropogenic disturbances shift Amazon forests along a structural spectrum.

    Get PDF
    Amazon forests are being degraded by myriad anthropogenic disturbances, altering ecosystem and climate function. We analyzed the effects of a range of land-use and climate-change disturbances on fine-scale canopy structure using a large database of profiling canopy lidar collected from disturbed and mature Amazon forest plots. At most of the disturbed sites, surveys were conducted 10?30 years after disturbance, with many exhibiting signs of recovery. Structural impacts differed in magnitude more than in character among disturbance types, producing a gradient of impacts. Structural changes were highly coordinated in a manner consistent across disturbance types, indicating commonalities in regeneration pathways. At the most severely affected site ? burned igapĂł (seasonally flooded forest) ? no signs of canopy regeneration were observed, indicating a sustained alteration of microclimates and consequently greater vulnerability to transitioning to a more open-canopy, savanna-like state. Notably, disturbances rarely shifted forests beyond the natural background of structural variation within mature plots, highlighting the similarities between anthropogenic and natural disturbance regimes, and indicating a degree of resilience among Amazon forests. Studying diverse disturbance types within an integrated analytical framework builds capacity to predict the risk of degradation-driven forest transitions
    corecore