127 research outputs found

    Microbial Ecology and Global Health

    Get PDF

    Burkholderia cepacia Complex Infections Among Cystic Fibrosis Patients: Perspectives and Challenges

    Get PDF
    The Burkholderia cepacia complex (Bcc) is a group of closely related bacterial species that emerged in the 1980s as the etiological agents of severe and often lethal respiratory infections among cystic fibrosis (CF) patients. After several outbreaks in CF centers in Europe and North America, segregation measures were introduced to avoid patient-to-patient transmission. Presently, the prevalence of Bcc infections among CF patients worldwide is below 5% in the majority of CF centers, although exceptions are registered in some European countries. Infections by these pathogens remain problematic due to the high resistance to antimicrobials, the easy patient-to-patient transmission, and the unpredictable outcome of infections that range from asymptomatic carriage to the cepacia syndrome, a fulminating pneumonia often associated with septicemia that can lead to the decease of patients within a period of time as short as 1 week. In this chapter, we review the evolving epidemiology of Bcc infections in CF patients, the virulence traits and mechanisms used by these bacteria, and the recent developments in vaccine and vaccine components research to prevent Bcc infections

    Characterization of the Burkholderia cenocepacia J2315 Surface-Exposed Immunoproteome

    Get PDF
    Infections by the Burkholderia cepacia complex (Bcc) remain seriously life threatening to cystic fibrosis (CF) patients, and no effective eradication is available. A vaccine to protect patients against Bcc infections is a highly attractive therapeutic option, but none is available. A strategy combining the bioinformatics identification of putative surface-exposed proteins with an experimental approach encompassing the “shaving” of surface-exposed proteins with trypsin followed by peptide identification by liquid chromatography and mass spectrometry is here reported. The methodology allowed the bioinformatics identification of 263 potentially surface-exposed proteins, 16 of them also experimentally identified by the “shaving” approach. Of the proteins identified, 143 have a high probability of containing B-cell epitopes that are surface-exposed. The immunogenicity of three of these proteins was demonstrated using serum samples from Bcc-infected CF patients and Western blotting, validating the usefulness of this methodology in identifying potentially immunogenic surface-exposed proteins that might be used for the development of Bcc-protective vaccines

    Design and Optimization of Microbial Fuel Cells and Evaluation of a New Air-Breathing Cathode Based on Carbon Felt Modified with a Hydrogel—Ion Jelly®

    Get PDF
    Funding Information: This research was funded by Fundação para a Ciência e a Tecnologia projects DSAIPA/DS/0117/2020, UIDB/04565/2020, and UIDP/04565/2020, by the Associate Laboratory Institute for Health and Bioeconomy—i4HB project LA/P/0140/2020. This work was supported by the Associate Laboratory for Green Chemistry—LAQV financed by national funds from FCT/MCTES (UIDB/50006/2020). We also thank Fundação para a Ciência e Tecnologia (FCT) for funding (SFRH/BD/77568/2011 (R.N.L.C.); SFRH/BPD/80293/2011 (R.M.A.)). C.M.C. acknowledges FCT for the Ciência 2008 Program; S.V.R. acknowledges the financial support from FCT (Portuguese Foundation for Science and Technology) for a postdoctoral research grant (FRH/BPD/33864/2009). This work was supported by the Associate Laboratory for Green Chemistry—LAQV, financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020); the Institute for Bioengineering and Biosciences—iBB, financed by FCT (UID/BIO/04565/2013); and from Programa Operacional Regional de Lisboa 2020 (Project N. 007317). Publisher Copyright: © 2023 by the authors.The increased demand for alternative sustainable energy sources has boosted research in the field of fuel cells (FC). Among these, microbial fuel cells (MFC), based on microbial anodes and different types of cathodes, have been the subject of renewed interest due to their ability to simultaneously perform wastewater treatment and bioelectricity generation. Several different MFCs have been proposed in this work using different conditions and configurations, namely cathode materials, membranes, external resistances, and microbial composition, among other factors. This work reports the design and optimization of MFC performance and evaluates a hydrogel (Ion Jelly®) modified air-breathing cathode, with and without an immobilized laccase enzyme. This MFC configuration was also compared with other MFC configuration performances, namely abiotic and biocathodes, concerning wastewater treatment and electricity generation. Similar efficiencies in COD reduction, voltage (375 mV), PD (48 mW/m2), CD (130 mA/m2), and OCP (534 mV) were obtained. The results point out the important role of Ion Jelly® in improving the MFC air-breathing cathode performance as it has the advantage that its electroconductivity properties can be designed before modifying the cathode electrodes. The biofilm on MFC anodic electrodes presented a lower microbial diversity than the wastewater treatment effluent used as inocula, and inclusively Geobacteracea was also identified due to the high microbial selective niches constituted by MFC systems.publishersversionpublishe

    Tuning the Biological Activity of Camphorimine Complexes through Metal Selection

    Get PDF
    This research was funded by FCT—Fundação para a Ciência e a Tecnologia, through projects CQE (UIDB/00100/2020 and UIDP/00100/2020) and C2TN (UID/MULTI/04349/2019), the projects of the Research Unit Institute for Bioengineering and Biosciences—iBB (UIDB/04565/2020 and UIDP/04565/2020), the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy—i4HB, and a PhD grant to J.P.C. (UI/BD/152244/2021).The cytotoxic activity of four sets of camphorimine complexes based on the Cu(I), Cu(II), Ag(I), and Au(I) metal sites were assessed against the cisplatin-sensitive A2780 and OVCAR3 ovarian cancer cells. The results showed that the gold complexes were ca. one order of magnitude more active than the silver complexes, which in turn were ca. one order of magnitude more active than the copper complexes. An important finding was that the cytotoxic activity of the Ag(I) and Au(I) camphorimine complexes was higher than that of cisplatin. Another relevant aspect was that the camphorimine complexes did not interact significantly with DNA, in contrast with cisplatin. The cytotoxic activity of the camphorimine complexes displayed a direct relationship with the cellular uptake by OVCAR3 cells, as ascertained by PIXE (particle-induced X-ray emission). The levels of ROS (reactive oxygen species) formation exhibited an inverse relationship with the reduction potentials for the complexes with the same metal, as assessed by cyclic voltammetry. In order to gain insight into the toxicity of the complexes, their cytotoxicity toward nontumoral cells (HDF and V79 fibroblasts) was evaluated. The in vivo cytotoxicity of complex 5 using the nematode Caenorhabditis elegans was also assessed. The silver camphorimine complexes displayed the highest selectivity coefficients (activity vs. toxicity).publishersversionpublishe

    R534C mutation in hERG causes a trafficking defect in iPSC-derived cardiomyocytes from patients with type 2 long QT syndrome

    Get PDF
    Patient-specific cardiomyocytes obtained from induced pluripotent stem cells (CM-iPSC) offer unprecedented mechanistic insights in the study of inherited cardiac diseases. The objective of this work was to study a type 2 long QT syndrome (LQTS2)-associated mutation (c.1600C > T in KCNH2, p.R534C in hERG) in CM-iPSC. Peripheral blood mononuclear cells were isolated from two patients with the R534C mutation and iPSCs were generated. In addition, the same mutation was inserted in a control iPSC line by genome editing using CRISPR/Cas9. Cells expressed pluripotency markers and showed spontaneous differentiation into the three embryonic germ layers. Electrophysiology demonstrated that action potential duration (APD) of LQTS2 CM-iPSC was significantly longer than that of the control line, as well as the triangulation of the action potentials (AP), implying a longer duration of phase 3. Treatment with the IKr inhibitor E4031 only caused APD prolongation in the control line. Patch clamp showed a reduction of IKr on LQTS2 CM-iPSC compared to control, but channel activation was not significantly affected. Immunofluorescence for hERG demonstrated perinuclear staining in LQTS2 CM-iPSC. In conclusion, CM-iPSC recapitulated the LQTS2 phenotype and our findings suggest that the R534C mutation in KCNH2 leads to a channel trafficking defect to the plasma membrane.Fil: Mesquita, Fernanda C. P.. Universidade Federal do Rio de Janeiro; BrasilFil: Arantes, Paulo C.. Universidade Federal do Rio de Janeiro; BrasilFil: Kasai Brunswick, Tais H.. Universidade Federal do Rio de Janeiro; BrasilFil: Araujo, Dayana S.. Universidade Federal do Rio de Janeiro; BrasilFil: Gubert, Fernanda. Universidade Federal do Rio de Janeiro; BrasilFil: Monnerat, Gustavo. Universidade Federal do Rio de Janeiro; BrasilFil: Silva dos Santos, Danúbia. Universidade Federal do Rio de Janeiro; BrasilFil: Neiman, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Leitão, Isabela C.. Universidade Federal do Rio de Janeiro; BrasilFil: Barbosa, Raiana A. Q.. Universidade Federal do Rio de Janeiro; BrasilFil: Coutinho, Jorge L.. National Institute Of Cardiology; BrasilFil: Vaz, Isadora M.. Pontificia Universidad Catolica de Parana; BrasilFil: dos Santos, Marcus N.. Universidade Federal do Rio de Janeiro; BrasilFil: Borgonovo, Tamara. Pontificia Universidad Catolica de Parana; BrasilFil: Cruz, Fernando E. S.. National Institute of Cardiology; BrasilFil: Miriuka, Santiago Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Medei, Emiliano H.. Universidade Federal do Rio de Janeiro; BrasilFil: Campos de Carvalho, Antonio C.. Universidade Federal do Rio de Janeiro; Brasil. National Institute of Cardiology; Brasil. National Institute for Science and Technology in Regenerative Medicine; BrasilFil: Carvalho, Adriana B.. Universidade Federal do Rio de Janeiro; Brasil. National Institute for Science and Technology in Regenerative Medicine; Brasi
    corecore