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Abstract

The Burkholderia cepacia complex (Bcc) is a group of closely related bacterial species that
emerged in the 1980s as the etiological agents of severe and often lethal respiratory
infections among cystic fibrosis (CF) patients. After several outbreaks in CF centers in
Europe and North America, segregation measures were introduced to avoid patient-
to-patient transmission. Presently, the prevalence of Bcc infections among CF patients
worldwide is below 5% in the majority of CF centers, although exceptions are registered
in some European countries. Infections by these pathogens remain problematic due
to the high resistance to antimicrobials, the easy patient-to-patient transmission, and
the unpredictable outcome of infections that range from asymptomatic carriage to the
cepacia syndrome, a fulminating pneumonia often associated with septicemia that can
lead to the decease of patients within a period of time as short as 1 week. In this chapter,
we review the evolving epidemiology of Bec infections in CF patients, the virulence traits
and mechanisms used by these bacteria, and the recent developments in vaccine and
vaccine components research to prevent Bcc infections.

Keywords: Burkholderia cepacia complex, emerging species, evolving epidemiology,

virulence determinants, immunoreactive proteins, vaccine development

1. Introduction

The Burkholderia cepacia complex (hereafter referred to as Bcc) is a group of closely related
bacteria that emerged in the 1980s as problematic pathogens to cystic fibrosis (CF) patients [1].
Infections by Bcc are particularly feared due to (1) the easy patient-to-patient transmission of
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specific strains; (2) the ability to resist to multiple antibiotics; and (3) the unpredictable outcome
of infections, which ranges from asymptomatic carriage to the so-called cepacia syndrome, an
often lethal necrotizing pneumonia accompanied with septicemia [1, 2]. Initially described in the
1950s by Burkholder [3] as the cause of soft rot in onions, the species then named Pseudomonas
cepacia was moved into the new genus Burkholderia after the work of Yabuuchi and colleagues
in 1992 [4]. However, the most impressive developments on the taxonomy of this group of bac-
teria have been achieved after the seminal work of Vandamme and colleagues who proposed
the division of the species into distinct genomovars [5]. Presently, the Bcc comprises 20 species
(Table 1), and the genome sequence of several strains is publicly available in databases such
as the Burkholderia Genome DB and the Integrated Microbial Genomes & Microbiomes [6, 7].

Bcc species Genome sequence availability Reference
B. ambifaria 4 complete genomes (strains AMMD, MC40-6, MEX-5, IOP-120) [8]
B. anthina In progress [9]
B. arboris In progress [10]
B. cenocepacia 18 complete genomes (strains J2315, H111, AU1054, B1, MCO-3, [11]

PC184, HI2424, DDS 22E-1, DWS 37E-2, ST32, 842, 895, MSMB384

WGS, 6, 7, CEIB, 869T2, TAtl-371)
B. cepacia 8 complete genomes (strains 383, AMMD, ATCC 25416; Bu72, DDS [4]

7H-2, GG4, ]BK9, LO6)
B. contaminans 1 complete genome (strain MS14) [12]
B. diffusa In progress [10]
B. dolosa 1 complete genome (strain AU0158) [13]
B. lata 1 complete genome (strain 383) [12]
B. latens In progress [10]
B. metallica No information [10]
B. multivorans 3 complete genomes (ATCC17616, ATCC BAA-247, DDS 15A-1) [5]
B. pseudomultivorans In progress [14]
B. pyrrocinia 1 complete genome (strain DSM 10685) [9]
B. seminalis In progress [10]
B. stabilis No information [15]
B. stagnalis In progress [16]
B. territorii In progress [16]
B. ubonensis 1 complete genome (strain MSMB22) [17]
B. vietnamiensis 3 complete genomes (strains G4, LMG10929, WPB) [18]

Databases were assessed by the end of July 2016.

Table 1. Burkholderia cepacia complex species names and genome sequence availability in the databases Burkholderia
Genome DB and Integrated Microbial Genomes & Microbiomes [6, 7].



Burkholderia cepacia Complex Infections Among Cystic Fibrosis Patients: Perspectives and Challenges
http://dx.doi.org/10.5772/67712

2. Evolving epidemiology of Bcc infections

All Bec species are virtually potential pathogens to CF patients. However, epidemiology
studies have shown an uneven geographical and regional distribution of clinical isolates
among the Bcc species, with the predominance of Burkholderia cenocepacia, followed by
Burkholderia multivorans. Early studies performed during the 1980s and 1990s have shown
that in addition to cases of chronic infection due to specific strains, many outbreaks reported
in Europe and North America were due to the spread of particularly virulent strains that
easily disseminated within a given CF center [1]. Although the environment is thought to be
the natural reservoir of these strains, a definitive proof is still lacking.

A few particularly epidemic strains became notorious for the worst reasons. Perhaps,
the best-known strain is the Edinburgh-Toronto lineage also known as the ET12 clone, an
intercontinental clone responsible for several infections and fatalities in CF centers in the
UK and Canada [19]. The best-known representative strain of this highly transmissible
clone is the B. cenocepacia J2315 strain, the first Bec strain with its genome sequence publicly
available (Table 1) and one of the best studied Bcc strains [20]. Another example of a strain
that disseminated within centers and even among centers is the PHDC strain. The strain,
responsible for almost 20% prevalence in one CF center in the USA, was later found in another
CF center, where an increase in Bcc prevalence was experienced. The dissemination of the
strain was associated with the transfer of an infected patient from the initial center to the
second one [21]. A later study by Coenye et al. [22] showed that the PHDC strain was also
present in European patients (namely in France, Italy, and the UK), concluding that the PHDC
strain was the second-identified Bcc transatlantic clone. Interestingly, both intercontinental
clones belong to the B. cenocepacia species, although the ET12 belongs to subgroup IIIA and the
PHDC belongs to subgroup IIIB. The B. cenocepacia species includes other clones that spread
among CF centers, namely the Midwest American clone and the CZI Czech epidemic clone
[23, 24]. Evidence of transmission of particularly epidemic strains of B. cenocepacia led to the
introduction of segregation measures in CF centers in Europe and America, with a significant
reduction of prevalence of infections [1, 25-27]. However, these segregation policies had a dev-
astating impact on patients infected with Bec due to social isolation and stigma and negative
psychological impacts [28]. Although effective in interrupting strain transmission, segregation
measures do not prevent new acquisitions. Nevertheless, these measures led to a reduction
of prevalence of Bcc infections from more than 20% in several centers to less than 5% both in
the USA and the majority of European countries [29, 30]. However, prevalence of chronic Bec
infections is still ranging 5-10% in Denmark, Portugal, Slovak Republic, Russian Federation,
and Latvia, reaching values of 15 and 23% in Serbia and Lithuania, respectively [30].

Although the Bcc strains responsible for the vast majority of infections both in Europe and
North America belong to the B. cenocepacia species, recent evidence indicates a changing epi-
demiology. B. multivorans emerged as the dominant species in France by 2004 and as the
second most important species in the USA [31, 32]. Recent reports also indicate Burkholderia
contaminans as an emerging Bcc species associated with CF infections. Early reports of a
high incidence of the species among CF patients came from Portugal and Argentina [33-35].
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Interestingly, in the case of the Portuguese CF population, two B. contaminans clones infecting
CF patients were found as indistinguishable from two B. contaminans strains isolated from
nonsterile nasal saline solutions of commercial origin during routine surveillance by the
Portuguese Medicines and Health Products Authority [36]. A recent work by Medina-Pascual
and colleagues on the surveillance of Bcc infections in Spanish CF patients also reported a
B. contaminans overall incidence of 36.5% in the period 2008-2012, surpassing the previously
dominant species B. cenocepacia and B. multivorans [37]. The emergence of B. contaminans
among Spanish CF patients was hypothesized to be due to unspecified ecological advantages
that enable the species to increase its presence in hospitals or in the environment [37]. In
the case of Swiss CF-patients, B. cenocepacia was the most frequently isolated species in the
period 1998-2013, but B. multivorans and B. contaminans emerged during the last years of the
study period [38]. A 30-year study of Bec infections among CF patients from British Columbia
(Canada) evidenced a major impact of segregation measures in Bec epidemiology; while B.
cenocepacia was dominant before the introduction of these measures, B. multivorans strains
became dominant after implementation of novel infection control measures in 1995 [39]. This
study and others highlight the impact of infection control measures on Bcc species recovered
from CF patients. It is now apparent that while epidemic B. cenocepacia strains dominated in
early years, nonclonal B. multivorans and B. contaminans strains are emerging.

3. Bcc virulence factors and traits

Over the last 20 years, substantial progress has been achieved on the knowledge of Bcc
virulence factors and determinants, although the exact contribution of some of them to the
success of infection remains to be fully understood. It is currently accepted that Bcc virulence
does not rely on a single virulence factor, being multifactorial. Bacterial structures such as
flagella, the cable pili, and the 22-kDa adhesin are considered virulence factors since they play
important roles in the initial steps of interaction with the host cell, promoting the adherence
to the lung surface and the invasion of lung epithelial cells [39-41]. In addition, the majority
of B. cenocepacia strains are able to survive and replicate intracellularly in airway epithelial
cells and macrophages, evading the primary cellular defense mechanisms of the lung and
avoiding clearance. The factors involved in this ability, exopolysaccharide (EPS) biosynthesis,
biofilm formation, resistance to antibiotics, and oxidative stress resistance, as well as the iron
acquisition ability are also among virulence determinants described for Bcc [20, 42, 43]. Some
of these virulence factors are further detailed below.

3.1. Alternative sigma factors

RpoE and RpoN are two alternative sigma factors involved in the regulation of the ability of
intracellular B. cenocepacia to delay phagolysosomal fusion in murine macrophages [44, 45].
RpokE is the extra-cytoplasmic stress response regulator required by B. cenocepacia to grow under
conditions of high osmolarity and high temperature [44]. RpoN, or sigma factor 0*, is best
known for its involvement in nitrogen-related gene regulation. In B. cenocepacia, 0** is involved
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in motility and biofilm formation [45]. Results from the mapping of 0* regulon and the charac-
terization of a B. cenocepacia H111-derived 0 mutant suggest that this alternative sigma factor
plays an important role in the control of nitrogen metabolism, in the metabolic adaptation of
B. cenocepacia H111 to stressful and nutrient-limited environments and in virulence toward the
nematode Caenorhabditis elegans [46]. In addition, it was also reported that RpoN regulates genes
involved in exopolysaccharide production, biofilm formation, motility, and virulence [46]. A B.
cenocepacia mutant defective in a gene encoding a putative o*-related transcription regulator
(BCAL1536) was found as attenuated in the rat agar bead infection model [47].

3.2. Lipopolysaccharides and extracellular polysaccharides

One of the central components of the outer membrane in Gram-negative bacteria is the lipop-
olysaccharide (LPS), a complex molecule composed by the lipid A, the core oligosaccharide,
and the O-antigen moieties (reviewed in Ref. [48]). The genes involved in LPS production
by B. cenocepacia are located in chromosome I, organized in three main clusters, one for each
LPS component (lipid A: BCAL1929 to BCAL1935; core: BCAL2402 to BCAL2408; O anti-
gen: BCAL3110 to BCAL3125) together with additional genes encoding sugar modification
enzymes [49, 50]. Bcc bacteria LPS differs from other Gram-negative bacteria LPS due to the
complete lack of negatively charged residues and the presence of the heterodimeric disac-
charide D-glycero-D-talo-oct-2-ulosonic acid-(2—-4)-3-deoxy-D-manno-oct-2-ulosonic acid
(Ko-(2—4)-Kdo) in the core region; the presence of a 4-amino-4-deoxyarabinose (Ara4N) resi-
due, either in the core or in lipid A; and the structure of O-antigen [50, 51]. This particular
composition changes the bacterial surface charge, inhibiting the binding and successful action
of antibiotics, contributing to the persistence of bacterial infection [51]. Recently, it was dem-
onstrated that although L-Ara4N modifications do not affect recognition, they are critical for
the establishment of infection [52]. Several studies have demonstrated that when neutrophils
interact with Bcc LPS, the expression of CD11b on their surface increases, stimulating neu-
trophil respiratory burst response [53]. In addition, macrophages and human blood cells are
also stimulated by Bcc LPS, producing pro-inflammatory cytokines such as TNF-a, IL-6, and
IL-8 [54, 55].

B. cenocepacia 2315 is unable to produce the O-antigen. In this particular strain, this is due to
an interruption in the wbcE gene-encoding BCAL 3125 [56]. The expression of O-antigen by
Bcc strains was demonstrated to reduce phagocytosis by macrophages without interfering
with the intracellular survival of bacteria [56].

The production of exopolysaccharides (EPSs) was described for several Burkholderia species. EPS
production by Bcc is regarded as playing an important role in the chronicity of Bcc infections
[57-62]. Cepacian is the most common EPS produced by Bcc and non-Bec species, both from
clinical and environmental sources [59, 63]. Cepacian interferes with phagocytosis by human
neutrophils, facilitating the bacterial persistence in a mouse model of infection [64, 65]. The EPS
was shown to inhibit the production of ROS by neutrophils and to scavenge reactive oxygen spe-
cies (ROS), playing a role in the survival of cepacian-producing strains in different environments
[64-67]. As a result of a frameshift mutation in the bceB gene (BCAMO0856) encoding a putative
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glycosyltransferase, Cepacian is not produced by the B. cenocepacia ET12 representative strain
J2315 [49, 62].

3.3. Biofilms

Bcc bacteria were found to persist in biofilms in vitro. Biofilm formation and maturation
depend on many factors, including EPS production, motility, iron availability, and multiple
gene regulatory systems, such as quorum sensing, alternative sigma factors, or global
regulators such as the ShvR and AtsR [45, 58, 68-73]. In addition, Bcc can form small colony
variants in vitro, a colony morphology that is associated with enhanced biofilm formation,
antibiotic resistance, and persistence [74].

Several studies have been performed to understand the importance and relevance of biofilm
formation in Bec biology. Bec bacteria growing in biofilms are usually more tolerant to multiple
antibiotics, although similar susceptibilities were reported for plancktonic and biofilm cells to
the antibiotics kanamycin, amikacin, and ciprofloxacin [75, 76]. Recently, Bcc biofilms were
shown to contain persister cells that are able to survive in the presence of high concentrations
of antibiotics by avoiding production of reactive oxygen species [77]. In addition, using neutro-
phil-like dHL60 cells, it was shown that the presence of these immune system cells enhanced
biofilm formation that protected Bcc bacteria against neutrophils by inducing their necrosis,
acting as a barrier to the migration of neutrophils, and masking the bacteria from being rec-
ognized by neutrophils [78]. Although some evidence suggests that biofilm formation plays a
role in bacterial persistence in the CF airways, this topic needs to be further studied.

3.4. Quorum sensing

Quorum sensing is a mode of regulation of gene expression that is dependent on the density
of the bacterial population. Bec bacteria have at least four quorum sensing systems. The
CeplIR quorum sensing system is homologous to the LuxIR system of Vibrio fischeri (reviewed
in Ref. [79]). The CepIR system positively regulates the virulence of B. cenocepacia toward
model organisms like C. elegans, Galleria mellonella, rodents, zebrafish, alfalfa, and onions
[80-83]. In addition to the CeplIR, B. cenocepacia encodes the CcilR, the CepR2, and the BDSF
quorum sensing systems [84, 85]. While the CepIR and CciR quorum sensing systems rely
on acyl homoserine lactones as signaling molecules, the BDSF system uses cis-2-dodecenoic
acid as the signaling molecule, and the CepR2 is an orphan quorum sensing system [85]. An
arsenal of genes regulated by quorum sensing in Bcc bacteria was described, including the
negatively regulated siderophore synthesis and the positively regulated expression of the
genes encoding zinc metalloproteases (Zmps), swarming motility and biofilm formation, all
thought to have an impact when the bacterium is infecting the CF patient [71, 80, 86, 87].

3.5. Protein secretion systems

Both Gram-negative and positive bacteria use protein secretion systems to secrete toxins
or other proteins, either directly into the environment or into host cells. These systems are
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particularly well studied in the CF pathogens Bcc and Pseudomonas aeruginosa. For instance,
Bcec strains of the ET12 lineage and Burkholderia vietnamiensis harbor type I and II secretion
systems (T1SS, T2SS) implicated, for instance, in the secretion of hemolytic proteins [88, 89].
The T2SS is also involved in B. cenocepacia secretion of two zinc metalloproteases, ZmpA and
ZmpB, which play a role in virulence [80, 90]. Two T4SSs are encoded by B. cenocepacia; the
T4SS-1 encoded in a plasmid, and the T4SS-2 encoded in chromosome 2 [91]. Until now, only
the T4SS-1 was identified in B. cenocepacia strains as necessary for virulence in onions and
intracellular survival in phagocytes [92].

In a mouse agar bead infection model, the T3SS has been shown to be important for bacterial
pathogenesis [93]. Although the precise mechanism is still not clear, T3SS seems to play no
role in intracellular survival of B. cenocepacia [94].

Four type V secretion systems are encoded within the genome of B. cenocepacia J2315 [49].
Proteins transported by this type of transporters contain pertactin and hemagglutinin
domains and are thought to play a role in bacterial adhesion [49].

B. cenocepacia also encodes a T6SS, which was shown to affect the actin cytoskeleton of
macrophages and the assembly of the reduced nicotinamide adenine dinucelotide phosphate
(NADPH) oxidase complex in B. cepacia-containing vacuoles (BcCV's) by inactivation of Racl
and Cdc42 [73, 95, 96]. B. cenocepacia was found to efficiently activate the inflammasome by
a yet uncharacterized T6SS effector [97]. Consequently, monocytes and THP-1 cells release
IL-1B in a pyrin-, Asc-, and T6SS-dependent manner [97]. The T6SS also enhances caspase-1
activation, negatively regulated by the sensor kinase-response regulator AtsR [73]. In addition,
a recent paper suggests that the T6SS might be important for the secretion of T2SS effectors
into the host cytoplasm, such as ZmpA and ZmpB, revealing an unanticipated role for type
IT secretion systems in intracellular survival and replication of B. cenocepacia [96]. Although
membrane vesicles cannot be considered a canonical secretion system, they can effectively
allow the secretion of several hydrolytic enzymes and toxins [98]. Table 2 summarizes and
compares the most relevant information available about secretion systems of Bcc bacteria and
their counterparts in the major CF pathogen P. aeruginosa.

3.6. Iron uptake

In order to carry out iron chelation and uptake, members of the Bcc can produce up to four
distinct siderophores: ornibactin, pyochelin, cepabactin, and cepaciachelin [122]. Ornibactin
appears to be the most important and abundant siderophore produced by B. cenocepacia
strains [123, 124]. The pathways and regulatory mechanisms of ornibactin synthesis and
uptake are relatively well known [87, 125-127]. The requirement of this siderophore for
B. cenocepacia virulence was demonstrated in different infection models, including the rat agar
bead, G. mellonella, and C. elegans [82, 125, 127].

The competition for available iron by Bcc bacteria and other CF lung colonizing organisms
such as P. aeruginosa was reported to occur in the CF lung, although it is not completely clear
how Bcc organisms acquire iron from host proteins [128, 129].
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Secretion system Burkholderia cepacia complex P. aeruginosa

T1SS Hemolytic proteins [88, 89] HasAp (heme-binding) [99]; AprA and
AprX (alkaline proteases) [100, 101]

T2SS ZmpA and ZmpB [80, 90] LasB (Major extracellular protease) [102],
Staphylolysin LasA [102], Aminopeptidase
PaAP [103], Protease IV [104], Lipases
LipA, LipC, phospholipase C, PIcH, and
PIeN [105, 106], CbpD Chitin-binding
protein CbpD [107]; Exotoxin A [108]

T35S No effector described yet, plays a role GTPase-activator ExoS and ADP-
in evasion of the host immune system ribosyltransferase ExoT [109], adenylate
[93, 94] cyclase ExoY [110], phospholipase A2
ExoU and ExoS [111]
T4SS T4SS-1: Plant cytotoxic proteins, T4SS-2:  Integrative and conjugative elements
Plasmid mobilization [91] (ICEs): ICEclc [112], Pathogenicity islands:

PKLC102 (includes the type IV sex pili-
encoding pil cluster and the chvB gene
encoding a virulence factor) [113], and
PAP-I (includes several virulence factors,
such as CupD type fimbriae, and the
PvrSR/ResCB regulatory system) [114]

T55S Four T5SS: two containing pertactin Autotransporter: EstA (esterase activity)
domains involved in adhesion, other two [115]; Two-partner secretion systems
contain haemagglutinin repeats [49] LepA/LepB [116] and CupB [117], and the

PdtA/PdtB system [118]

T6SS Hcp and VgrGs [73, 95, 96] Hcp and VgrGs [119, 120]

Membrane vesicles (MV) MV-associated (metallo)proteases, Multiple virulence factors: Alkaline
(phospho)lipases, peptidoglycan- phosphatase, hemolytic phospholipase C;
degrading enzymes [98] the Cif toxin that inhibits CFTR-mediated

chloride secretion in the airways [121]

Table 2. Summary of secretion systems from Bcc and the respective counterparts from the CF major pathogen P. aeruginosa.

3.7. Resistance to antimicrobials

Difficulties in eradicating Bcc infections mainly result from their intrinsic resistance to multiple
antibiotics, including polymyxins, aminoglycosides, and most (3-lactams. In addition, these bac-
teria have the ability to develop in vivo resistance to virtually all classes of antibiotics [20, 130, 131].
Antibiotics administration to CF patients was also reported to affect resistance profiles of Bcc
bacteria [132]. Various mechanisms involved in the resistance of Bcc to multiple antibiotics have
been described and include enzymatic inactivation ((3-lactamases, aminoglycoside-inactivating
enzymes, dihydrofolate reductase), alteration of drug targets, integrons, cell wall imperme-
ability, and active efflux pumps [88, 133-140]. However, major contributions to intrinsic and
acquired multidrug resistance by Bcc seem to be due to efflux pumps of the resistance nod-
ulation cell division (RND) family. In fact, the B. cenocepacia J2315 genome encodes at least
16 efflux systems of the RND family [141]. At least six of these RND efflux pumps were impli-
cated in drug resistance —RND-1, RND-3, RND-4, RND-8, RND-9, and RND-10 [138-140, 142,
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143]. RND-3 and RND-4 efflux pumps were described as being involved in the resistance to
various antimicrobial drugs including tobramycin and ciprofloxacin; the RND-3, RND-8, and
RND-9 efflux systems protect biofilm-grown cells against tobramycin; the RND-8 and RND-9
efflux pumps are not involved in ciprofloxacin resistance; and RND-10 efflux pump seems to
confer resistance to chloramphenicol, fluoroquinolones, and trimethoprim [140, 143]. It was
suggested that mutations in the RND-3 regulator-encoding gene may be responsible for the
prevalent overexpression of this efflux pump in clinical Bcc isolates, contributing to their high
levels of antibiotics resistance [144].

3.8. Motility

Genes involved in the synthesis and assembly of B. cenocepacia flagella are located in chromo-
some I, distributed within five clusters, with two additional genes found on chromosomes
2 and 3 [49]. These genes were found as being upregulated when the organism was incubated
in CF sputum, contributing to its virulence in a murine agar bead infection model [145, 146].
More recently, flagellin expression and flagellar morphology of B. cenocepacia grown in a
medium mimicking the CF sputum was analyzed [147]. Those nutritional conditions led to
increased motility and flagellin expression, by inducing the synthesis of multiple flagella on
the cell surface of B. cenocepacia K56-2 [147]. A link between the loss of bacterial motility and
the development of the cepacia syndrome was recently established based on a transcriptomics
analysis comparing the B. cenocepacia ST32 CF isolates recovered from bloodstream, at the time
of cepacia syndrome, with their sputum counterparts, recovered prior to the development of
this syndrome, revealing that flagellar genes were downregulated in isolates recovered from
the bloodstream [148].

3.9. Intracellular survival

Infection assays using free-living amoeba demonstrated that B. cenocepacia can survive in an
acidified intracellular compartment [94, 149]. These bacteria were also demonstrated to have
the ability to delay the maturation of phagolysosomes in murine macrophages [94-96, 150].
Although the B. cenocepacia containing vacuoles (BcCVs) progress normally to the early phago-
somal stage, the fusion of the BcCV's with late endosomes and subsequent maturation is sig-
nificantly delayed comparing with vacuoles containing heat-killed bacteria [94]. In contrast
to heat-killed bacteria that ended up in phagolysosomes with a pH of 4.5, BcCVs did not
acidify normally maintaining a luminal pH around 6.4 [94]. This ability of B. cenocepacia to
alter the acidification of the vacuole seems to be correlated with the delay in recruitment or
assembly on the BcCV membrane of both the 16-kDa subunit of the phagosomal vacuolar
ATPase (vATPase) and the NADPH phagocyte oxidase [96, 151]. In contrast, Al-Khodor and
colleagues demonstrated that B. cenocepacia J2315 only transiently interacts with the endocytic
pathway, event after which the bacterium is able to rapidly escape to the cytosol [152]. Escaped
bacteria are afterward targeted by the host autophagy pathway, through the recruitment to
the bacterial vicinity of the ubiquitin conjugation system, the autophagy adaptors p62 and
NDP52, and the autophagosome membrane-associated protein LC3B. However, apparently,
this host cell control through autophagy ultimately fails in a high proportion of infected cells,
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being B. cenocepacia able to block the autophagosome completion and replicate in the cytosol
of the host cell [152].

Tobetter understand the intracellular behavior of B. cenocepacia in CF infected patients, studies
have also been performed in Cystic fibrosis transmembrane conductance regulator (CFTR)-
defective macrophages. Remarkably, the delayed maturation arresting of BcCV's is more
exaggerated in CFTR-defective macrophages than in normal macrophages and is specific to
live B. cenocepacia [153]. Although it is not clear how the CFTR defect enhances the B. ceno-
cepacia intracellular survival, there is evidence of a link between the defective CFTR with
autophagy deficiency and decreased clearance of protein aggregates and inflammation [154].
The elucidation of these survival details, especially the ability of B. cenocepacia to synergize
with the CFTR defect and its consequences on the mechanism of autophagy will provide new
avenues to explore novel therapeutic approaches for CF patients [155].

4. Toward a vaccine to prevent Bcc infections

No objective guidelines for eradication strategies are available for Bcc infections, as these
pathogens are intrinsically resistant to the majority of the clinical available antimicrobials
[156]. Currently, no immunotherapeutic strategy to protect CF patients from Bcc infections
is available. Several studies on the immune response elicited by Bcc species in CF patients
have been performed; however, they are challenging due to the ability of this bacteria to
modulate and overcome the host immune responses and the ability to survive intracellularly
in phagocytes and epithelial cells [157, 158].

An important aspect to consider during vaccine design is the optimal balance of Thl and
Th2 responses required for effective pathogen clearance. For example, a Th1 bias elicits a
cell-mediated response, while Th2 induces a humoral immune response [159]. In the case
of CF, their immune phenotype appears to be skewed toward Th2 responses [160]. In the
case of Bcc, the type of host response necessary to clear the pathogen is still not fully under-
stood, making it difficult to develop a protective vaccine (Table 3). Recently, BALB/c mice
immunized intraperitoneally with the proteins Linocin and OmpW showed a significant
reduction of B. cenocepacia and B. multivorans cells in the lung and lower dissemination of
bacteria to the spleen [161]. While Linocin led to a robust Thl response, the OmpW led to
a mixed Th1/Th2 response [161]. The protection achieved with these proteins was greater
against B. cenocepacia infection, and OmpW immunization was more efficient in reducing the
lung bacterial load [161].

Nonpurified outer membrane proteins (OMP) from B. multivorans, supplemented with
the mucosal adjuvant adamantylamide dipeptide (AdDP) that promotes a robust Th2
response, were tested for immunization of BALB/c mice [162]. A statistically significant
increase in IgG and in mucosal IgA OMP-specific antibodies was observed, together with a
reduction of B. multivorans burden and lung pathology, but only a moderate cross protection
to B. cenocepacia was reported. The specificity of the immune response was found to be against
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90, 72, 66, and 60 kDa proteins. Elicitation of specific IgA antibodies by mucosal immunization
was also reported to be important to prevent the colonization of the respiratory tract by Bec
bacteria. In another study, the intranasal immunization of CD-1 mice with outer membrane
proteins (OMP) from B. cenocepacia was described to originate a Th2-biased response with
the maintenance of the bacterial burden, while mice immunized with OMP and the nonin-
flammatory mucosal adjuvant nanoemulsion (NE) elicited a Th1/Th2-balanced response that
led to a significant reduction of the B. cenocepacia cell burden [163]. The serum derived from
mice vaccinated with OMP-NE could also inhibit B. multivorans growth by 80.1%, showing
that induction of cross-reactive antibodies occurred after mice immunization. Additionally,
a highly conserved 17-kDa OmpA-like protein was recently identified as a new immune-
dominant epitope in mucosal immunization [163].

Metalloproteases are also considered as potential effective candidates for vaccine development
[90]. It was demonstrated that immunizations of rats using a conserved zinc metalloprotease
peptide 15 (PSCP) decreased the severity of B. cenocepacia infection and the lung damage was
reduced by 50% upon challenge with a B. cenocepacia strain after immunization [90].

In 2012, it was shown that the bacterial surface polysaccharide poly-f-(1-6)-N-acetyl-glucos-
amine (PNAG) confers protective immunity against Bcc infection in a lethal peritonitis mice
model [164]. In this study by Skurnik and colleagues using opsophagocytic assays, it was
observed that goat-raised antibodies against PNAG could kill Bcc strains (>80%) of the B. ceno-

Antigen Immune response Bcc animal model In vitro models References
OmpW Mixed Th1/Th2 BALB/c mice Spleen cells from [161]
immunosuppressed mice
with cyclophosphamide
Linocin Thl BALB/c mice Spleen cells from [162]
immunosuppressed mice
with cyclophosphamide
OMP plus NE Mixed Th1/Th2 CD-1 mice Murine splenocytes [163]
OMP plus AdDP Higher IgG and IgA  BALB/c mice ND [162]
titers immunosuppressed
with cyclophosphamide
PNAG ND FVB/N mice Opsonophagocytic [164]
assay
Zinc metalloprotease ~ Higher IgG and IgA  Sprague-Dawley rat ND [90]
peptide 15 (PSCP) titers agar bead model
FliC ND ND T cell hybridoma [165]
assays
BCAL2958 High IgG titers in ND Human neutrophils  [166]

human CF serum
samples

ND —Not determined.

Table 3. Summary of vaccine development against Bcc infections.
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cepacia, Burkholderia dolosa and B. multivorans species. Furthermore, bacterial killing was found
to depend of the presence of the complement [164].

Other proteins of putative immunogenic activity have been reported as potential vaccine
candidates. However, studies in a Bcc infection animal model are still lacking (Table 3). One
of these promising antigens is the OmpA-like BCAL2958 protein that was shown to be highly
conserved in Bceg, to elicit IgG antibodies in CF patients and to elicit an increase of TNFq,
elastase, NO, and MPO in neutrophils [166].

Musson and colleagues have shown that T-cell hybridomas against the Burkholderia pseudomallei
flagellar protein FliC epitope cross-reacted with orthologous FliC sequences from B. multivorans
and B. cenocepacia [165]. FliC epitopes were accessible for processing and presentation from
live or heat-killed B. cenocepacia bacteria, demonstrating that flagellin enters the HLA class II
Ag presentation pathway during infection of macrophages with B. cenocepacia.

Studies referred above revealed that subunit vaccines that only produce an antibody response
cannot fully prevent an infection caused by Bec bacteria [157, 161, 164]. Therefore, Bcc vaccines
containing multiple antigens that elicit a balanced Th1l and Th2 response are expected to be
effective in preventing Bcc infections. With this aim, immunoproteomics approaches have
been performed. For instance, Mariappan and colleagues identified 18 immunogenic pro-
teins from culture supernatants of B. cepacia that reacted with mice antibodies raised against
inactivated B. cepacia whole cells [167]. More recently, the analysis of the imunoproteome
of two clinical relevant strains of B. cenocepacia and B. multivorans revealed 15 common
immunoreactive proteins that reacted with CF human serum samples [168].

5. Concluding remarks

An overview of Bec infections in CF from early 1980s until the more recent available data was
presented. The prevalence of Bcc species in CF patients worldwide is still evolving, most prob-
ably as a result of infection control measures and segregation policies. Many virulence factors
have been identified, and the resulting wealth of information prompted the establishment of
new research lines envisaging the development of novel protective strategies and products,
namely vaccines and vaccine components.
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