69 research outputs found

    Amplification and expression of recombinant genes in serum-independent Chinese hamster ovary cells

    Get PDF
    AbstractCHO SSF3 cells grow as a suspension culture in unmodified commercial medium with only low-molecular weight ingredients. Continuous serum-free culture unexpectedly induced expression of a low dihydrofolate reductase activity in the originally dhfr− CHO cells. Nevertheless, it was possible with methotrexate to induce amplification of a gene coding for the hybrid plasminogen activator K2tu-PA cotransfected with a dhfr gene. Expression of K2tu-PA expression was proportionally increased to that of dhfr, which was measured with fluorescent methotrexate. Because no serum proteases were present, secreted K2tu-PA was not converted to the enzymatically active form, but was exclusively recovered in proenzyme form

    Genetic and developmental analysis of the sex-determining gene ‘double sex' (dsx) of Drosophila melanogaster

    Get PDF
    Sex determination in Drosophila depends on the ratio of X chromosomes to sets of autosomes (X:A). This chromosomal signal is used to regulate a few control genes whose state of activity selects either the male or the female sexual pathway. We have studied the structure and function of dsx (double sex) which appears to be the last regulatory gene on whose function the sexual pathway eventually depends. We have mutagenized the locus, varied the doses of dominant dsx-mutations and wildtype alleles, and combined different dsx-alleles with recessive mutations in other sex-determining genes, such as ix, tra-2 and tra. The locus dsx harbours two genetic functions, dsxm to implement the male program, dsxf to implement the female program. We found that dsxm and dsxf can mutate independently although most mutations abolish both functions. We conclude that dsxm and dsxf each have their specific domain, but also share a large region of DNA that is essential for both functions. We present evidence that the dominant mutations correspond to a constitutive expression of the male-determining function dsxm, with the simultaneous abolishment of the female-determining function dsxf. This effect can be counteracted by two doses of expressed dsxf so that a female phenotype results. The products of one dose of expressed dsxm and one dose of expressed dsxf in the same cell appear to neutralize each other which leads to a null phenotype. The mutant combinations suggest that the product of dsxf requires the products of ix+, tra-2+ and tra+ to become functiona

    Two types of interneurons in the mouse lateral geniculate nucleus are characterized by different h-current density

    Get PDF
    Although hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and the corresponding h-current (I(h)) have been shown to fundamentally shape the activity pattern in the thalamocortical network, little is known about their function in local circuit GABAergic interneurons (IN) of the dorsal part of the lateral geniculate nucleus (dLGN). By combining electrophysiological, molecular biological, immunohistochemical and cluster analysis, we characterized the properties of I(h) and the expression profile of HCN channels in IN. Passive and active electrophysiological properties of IN differed. Two subclasses of IN were resolved by unsupervised cluster analysis. Small cells were characterized by depolarized resting membrane potentials (RMP), stronger anomalous rectification, higher firing frequency of faster action potentials (APs), appearance of rebound bursting, and higher I(h) current density compared to the large IN. The depolarization exerted by sustained HCN channel activity facilitated neuronal firing. In addition to cyclic nucleotides, I(h) in IN was modulated by PIP(2) probably based on the abundant expression of the HCN3 isoform. Furthermore, only IN with larger cell diameters expressed neuronal nitric oxide synthase (nNOS). It is discussed that I(h) in IN is modulated by neurotransmitters present in the thalamus and that the specific properties of I(h) in these cells closely reflect their modulatory options

    Cd4+ T Cell Subsets during Virus Infection: Protective Capacity Depends on Effector Cytokine Secretion and on Migratory Capability

    Get PDF
    To analyze the antiviral protective capacities of CD4+ T helper (Th) cell subsets, we used transgenic T cells expressing an I-Ab–restricted T cell receptor specific for an epitope of vesicular stomatitis virus glycoprotein (VSV-G). After polarization into Th1 or Th2 effectors and adoptive transfer into T cell–deficient recipients, protective capacities were assessed after infection with different types of viruses expressing the VSV-G. Both Th1 and Th2 CD4+ T cells could transfer protection against systemic VSV infection, by stimulating the production of neutralizing immunoglobulin G antibodies. However, only Th1 CD4+ T cells were able to mediate protection against infection with recombinant vaccinia virus expressing the VSV-G (Vacc-IND-G). Similarly, only Th1 CD4+ T cells were able to rapidly eradicate Vacc-IND-G from peripheral organs, to mediate delayed-type hypersensitivity responses against VSV-G and to protect against lethal intranasal infection with VSV. Protective capacity correlated with the ability of Th1 CD4+ T cells to rapidly migrate to peripheral inflammatory sites in vivo and to respond to inflammatory chemokines that were induced after virus infection of peripheral tissues. Therefore, the antiviral protective capacity of a given CD4+ T cell is governed by the effector cytokines it produces and by its migratory capability

    Multiparameter toxicity assessment of novel DOPO-derived organophosphorus flame retardants

    Get PDF
    Halogen-free organophosphorus flame retardants are considered as replacements for the phased-out class of polybrominated diphenyl ethers (PBDEs). However, toxicological information on new flame retardants is still limited. Based on their excellent flame retardation potential, we have selected three novel 9,10- dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives and assessed their toxicological profile using a battery of in vitro test systems in order to provide toxicological information before their large-scale production and use. PBDE-99, applied as a reference compound, exhibited distinct neuroselective cytotoxicity at concentrations ≥10 μM. 6-(2-((6-Oxidodibenzo[1,2]oxaphosphinin-6-yl)amino)ethoxydibenzo[1,2]oxaphosphinine-6-oxide) (ETA-DOPO) and 6,6′-(ethane-1,2-diylbis(oxy))bis(dibenzo[1,2]oxaphosphinine-6-oxide) (EG-DOPO) displayed adverse effects at concentrations >10 μM in test systems reflecting the properties of human central and peripheral nervous system neurons, as well as in a set of non-neuronal cell types. DOPO and its derivative 6,6′-(ethane-1,2-diylbis(azanediyl))bis(6H-dibenzo[1,2]oxaphosphine-6-oxide) (EDA-DOPO) were neither neurotoxic, nor did they exhibit an influence on neural crest cell migration, or on the integrity of human skin equivalents.The two compounds furthermore displayed no inflammatory activation potential, nor did they affect algae growth or daphnia viability at concentrations ≤400 μM. Based on the superior flame retardation properties,biophysical features suited for use in polyurethane foams, and low cytotoxicity of EDA-DOPO, our results suggest that it is a candidate for the replacement of currently applied flame retardants

    IgG-like bispecific antibodies with potent and synergistic neutralization against circulating SARS-CoV-2 variants of concern

    Get PDF
    Monoclonal antibodies are a promising approach to treat COVID-19, however the emergence of SARS-CoV-2 variants has challenged the efficacy and future of these therapies. Antibody cocktails are being employed to mitigate these challenges, but neutralization escape remains a major challenge and alternative strategies are needed. Here we present two anti-SARS-CoV-2 spike binding antibodies, one Class 1 and one Class 4, selected from our non-immune human single-chain variable fragment (scFv) phage library, that are engineered into four, fully-human IgG-like bispecific antibodies (BsAb). Prophylaxis of hACE2 mice and post-infection treatment of golden hamsters demonstrates the efficacy of the monospecific antibodies against the original Wuhan strain, while promising in vitro results with the BsAbs demonstrate enhanced binding and distinct synergistic effects on neutralizing activity against circulating variants of concern. In particular, one BsAb engineered in a tandem scFv-Fc configuration shows synergistic neutralization activity against several variants of concern including B.1.617.2. This work provides evidence that synergistic neutralization can be achieved using a BsAb scaffold, and serves as a foundation for the future development of broadly reactive BsAbs against emerging variants of concern
    corecore