1,517 research outputs found

    Control of recollision wave packets for molecular orbital tomography using short laser pulses

    Full text link
    The tomographic imaging of arbitrary molecular orbitals via high-order harmonic generation requires that electrons recollide from one direction only. Within a semi-classical model, we show that extremely short phase-stabilized laser pulses offer control over the momentum distribution of the returning electrons. By adjusting the carrier-envelope phase, recollisions can be forced to occur from mainly one side, while retaining a broad energy spectrum. The signatures of the semi-classical distributions are observed in harmonic spectra obtained by numerical solution of the time-dependent Schr\"{o}dinger equation.Comment: 8 pages, 4 figures; v2: Added some extra clarifications; v3: minor grammatical change

    Semiclassical two-step model for strong-field ionization

    Get PDF
    We present a semiclassical two-step model for strong-field ionization that accounts for path interferences of tunnel-ionized electrons in the ionic potential beyond perturbation theory. Within the framework of a classical trajectory Monte-Carlo representation of the phase-space dynamics, the model employs the semiclassical approximation to the phase of the full quantum propagator in the exit channel. By comparison with the exact numerical solution of the time-dependent Schr\"odinger equation for strong-field ionization of hydrogen, we show that for suitable choices of the momentum distribution after the first tunneling step, the model yields good quantitative agreement with the full quantum simulation. The two-dimensional photoelectron momentum distributions, the energy spectra, and the angular distributions are found to be in good agreement with the corresponding quantum results. Specifically, the model quantitatively reproduces the fan-like interference patterns in the low-energy part of the two-dimensional momentum distributions as well as the modulations in the photoelectron angular distributions.Comment: 31 pages, 7 figure

    Functional identification of an aggression locus in the mouse hypothalamus

    Get PDF
    Electrical stimulation of certain hypothalamic regions in cats and rodents can elicit attack behaviour, but the exact location of relevant cells within these regions, their requirement for naturally occurring aggression and their relationship to mating circuits have not been clear. Genetic methods for neural circuit manipulation in mice provide a potentially powerful approach to this problem, but brain-stimulation-evoked aggression has never been demonstrated in this species. Here we show that optogenetic, but not electrical, stimulation of neurons in the ventromedial hypothalamus, ventrolateral subdivision (VMHvl) causes male mice to attack both females and inanimate objects, as well as males. Pharmacogenetic silencing of VMHvl reversibly inhibits inter-male aggression. Immediate early gene analysis and single unit recordings from VMHvl during social interactions reveal overlapping but distinct neuronal subpopulations involved in fighting and mating. Neurons activated during attack are inhibited during mating, suggesting a potential neural substrate for competition between these opponent social behaviours

    Initial-state dependence in time-dependent density functional theory

    Full text link
    Time-dependent density functionals in principle depend on the initial state of the system, but this is ignored in functional approximations presently in use. For one electron it is shown there is no initial-state dependence: for any density, only one initial state produces a well-behaved potential. For two non-interacting electrons with the same spin in one-dimension, an initial potential that makes an alternative initial wavefunction evolve with the same density and current as a ground state is calculated. This potential is well-behaved and can be made arbitrarily different from the original potential

    Why are Prices Sticky? Evidence from Business Survey Data

    Get PDF
    This paper offers new insights on the price setting behaviour of German retail firms using a novel dataset that consists of a large panel of monthly business surveys from 1991-2006. The firm-level data allows matching changes in firms' prices to several other firm-characteristics. Moreover, information on price expectations allow analyzing the determinants of price updating. Using univariate and bivariate ordered probit specifications, empirical menu cost models are estimated relating the probability of price adjustment and price updating, respectively, to both time- and state- dependent variables. First, results suggest an important role for state-dependence; changes in the macroeconomic and institutional environment as well as firm-specific factors are significantly related to the timing of price adjustment. These findings imply that price setting models should endogenize the timing of price adjustment in order to generate realistic predictions concerning the transmission of monetary policy. Second, an analysis of price expectations yields similar results providing evidence in favour of state-dependent sticky plan models. Third, intermediate input cost changes are among the most important determinants of price adjustment suggesting that pricing models should explicitly incorporate price setting at different production stages. However, the results show that adjustment to input cost changes takes time indicating "additional stickiness" at the last stage of processing

    Beaten into Submissiveness? An Investigation into the Protective Strategies used by Survivors of Domestic Abuse

    Get PDF
    This is a pre-copyedited, author-produced pdf of an article accepted for publication in Journal of Interpersonal Violence following peer review. Laura Irving & Ben Chi-pun Liu, 'Beaten into Submissiveness? An investigation Into the Protective Strategies Used by Survivors of Domestic Abuse', Journal of Interpersonal Violence, first published online 14 December 2016, available online at doi: 10.1177/0886260516682520 © The Author(s) 2016 Published by SAGEThe aim of the study was to identify the prevalence and perceived helpfulness of a variety of protective strategies that were used by female survivors of domestic abuse and to explore factors that may have influenced strategy usage. Forty participants were recruited from a voluntary sector domestic abuse service, commissioned by an outer London local authority in the UK. The measurement tools used were the Intimate Partner Violence Strategies Index and the CAADA Domestic Abuse, Stalking and ‘Honour’-Based Violence (DASH) Risk Assessment Checklist. The average age was 33 (SD=7.9, range: 20-57), half reported to be of Asian ethnicity, 37.5% White and 12.5% Black or Mixed ethnicity. The average DASH score was 9.8 (SD=13.2, range: 0-18) and an average of 18 (SD=6.7, range: 1-29) protective strategies were utilised by each participant. All of the most commonly used strategies were from the Placating category. Though Safety Planning strategies were rated as the most helpful by all participants, Placating strategies were also rated as helpful by two-thirds of participants. Stepwise multiple regression showed that Placating was the only significant predictor of DASH score (β=0.375, p<0.05) and accounted for 14% of the variance of DASH score. Findings showed that women utilized a diverse range of protective strategies with placating strategies being most intensely used and rated as helpful. However, placating strategy usage could be a risk factor as opposed to a protective factor. This study has also demonstrated that greater placating strategies were used by White than South Asian women, and women who were employed used more formal strategies. This research has extended the knowledge base of protective strategies that professionals can draw from to underpin decisions and interventions when working with domestic abuse survivors.Peer reviewedFinal Accepted Versio

    Metal Surface Energy: Persistent Cancellation of Short-Range Correlation Effects beyond the Random-Phase Approximation

    Get PDF
    The role that non-local short-range correlation plays at metal surfaces is investigated by analyzing the correlation surface energy into contributions from dynamical density fluctuations of various two-dimensional wave vectors. Although short-range correlation is known to yield considerable correction to the ground-state energy of both uniform and non-uniform systems, short-range correlation effects on intermediate and short-wavelength contributions to the surface formation energy are found to compensate one another. As a result, our calculated surface energies, which are based on a non-local exchange-correlation kernel that provides accurate total energies of a uniform electron gas, are found to be very close to those obtained in the random-phase approximation and support the conclusion that the error introduced by the local-density approximation is small.Comment: 5 pages, 1 figure, to appear in Phys. Rev.

    Exchange-correlation kernels for excited states in solids

    Full text link
    The performance of several common approximations for the exchange-correlation kernel within time-dependent density-functional theory is tested for elementary excitations in the homogeneous electron gas. Although the adiabatic local-density approximation gives a reasonably good account of the plasmon dispersion, systematic errors are pointed out and traced to the neglect of the wavevector dependence. Kernels optimized for atoms are found to perform poorly in extended systems due to an incorrect behavior in the long-wavelength limit, leading to quantitative deviations that significantly exceed the experimental error bars for the plasmon dispersion in the alkali metals.Comment: 7 pages including 5 figures, RevTe
    corecore