241 research outputs found

    Regularities of ultrasonography of suspensions of alumina nanoparticles in biological media

    Full text link
    This paper studies the echo-contrast properties of an alumina nanopowder suspension using ultrasonography (US) fully corresponding in its characteristics to the techniques of medical ultrasound diagnostics of organs and tissues. The purpose of this study was to search for the possible effect of the ionic and protein composition of the biological medium on the intensity of the reflected echo signal of the contrast material based on nanoparticles. It was found that the pH of the blood promotes the maximum use of echo contrast options of alumina nanopowder suspensions. Particle size measurements in the suspension using the dynamic light scattering technique showed the stabilizing effect of blood serum and plasma on the nanopowder suspension, resulting in the attenuation of the echo signal. The data offer a basis for the development of new contrast materials based on nanoparticles for the ultrasound imaging of the heart and blood vessels. The considered mechanisms of the established phenomena make it possible to elucidate the processes of interaction of metal oxide nanoparticles with biological molecules. © 2013 Pleiades Publishing, Ltd

    Адсорбция TX-100 и SDBS на поверхности нанопорошков Al2O3 и γ-Fe2O3 из водных растворов

    Get PDF
    Adsorption equilibriums in aqueous aluminum and iron oxides nanosuspensions stabilized by SDBS and TX-100 were investigated using UV spectrophotometry. It was established that the non-ionic surfactant TritonX-100 is not adsorbed from aqueous solution on a hydrophilic surface of both aluminum and iron oxide nanoparticles. At the same time adsorption of the anionic surfactant SDBS was observed in both oxides nanoparticles. In the investigated range of concentrations adsorption isotherms SDBS from aqueous solution on the surfaces of nanoparticles Al2O3 and γ-Fe2O3 not reach saturation. The share of the particles surface occupied by surfactant molecules were estimated based on the value of an area of molecules SDBS in the adsorption layer, which was derived from the isotherm of surface tension (0.10 nm2). The calculations showed that at the investigated concentrations SDBS Al2O3 employed approximately 30 % of surface of nanoparticles, and for γ-Fe2O3 – up to 10%.Методом УФ-спектрофотомерии были исследованы адсорбционные равновесия в водных наносуспензиях оксидов алюминия и железа, стабилизированных SDBS и TX-100. Установлено, что неионогенный ПАВ TritonX-100 не адсорбируется из водного раствора на гидрофильной поверхности наночастиц оксидов, как алюминия, так и железа. В то же время, для анионного ПАВ SDBS адсорбция наблюдалась на наночастицах обоих оксидов

    Forces During Bacteriophage DNA Packaging and Ejection

    Get PDF
    The conjunction of insights from structural biology, solution biochemistry, genetics and single molecule biophysics has provided a renewed impetus for the construction of quantitative models of biological processes. One area that has been a beneficiary of these experimental techniques is the study of viruses. In this paper we describe how the insights obtained from such experiments can be utilized to construct physical models of processes in the viral life cycle. We focus on dsDNA bacteriophages and show that the bending elasticity of DNA and its electrostatics in solution can be combined to determine the forces experienced during packaging and ejection of the viral genome. Furthermore, we quantitatively analyze the effect of fluid viscosity and capsid expansion on the forces experienced during packaging. Finally, we present a model for DNA ejection from bacteriophages based on the hypothesis that the energy stored in the tightly packed genome within the capsid leads to its forceful ejection. The predictions of our model can be tested through experiments in vitro where DNA ejection is inhibited by the application of external osmotic pressure

    Spherical magnetic nanoparticles fabricated by laser target evaporation

    Full text link
    Magnetic nanoparticles of iron oxide (MNPs) were prepared by the laser target evaporation technique (LTE). The main focus was on the fabrication of de-aggregated spherical maghemite MNPs with a narrow size distribution and enhanced effective magnetization. X-ray diffraction, transmission electron microscopy, magnetization and microwave absorption measurements were comparatively analyzed. The shape of the MNPs (mean diameter of 9 nm) was very close to being spherical. The lattice constant of the crystalline phase was substantially smaller than that of stoichiometric magnetite but larger than the lattice constant of maghemite. High value of Ms up to 300 K was established. The 300 K ferromagnetic resonance signal is a single line located at a field expected from spherical magnetic particles with negligible magnetic anisotropy. The maximum obtained concentration of water based ferrofluid was as high as 10g/l of magnetic material. In order to understand the temperature and field dependence of MNPs magnetization, we invoke the core-shell model. The nanoparticles is said to have a ferrimagnetic core (roughly 70 percent of the caliper size) while the shell consists of surface layers in which the spins are frozen having no long range magnetic order. The core-shell interactions were estimated in frame of random anisotropy model. The obtained assembly of de-aggregated nanoparticles is an example of magnetic nanofluid stable under ambient conditions even without an electrostatic stabilizer
    corecore