16 research outputs found

    Boiler Retrofit for the Utilization of Biodiesel

    Get PDF
    Fuel oil used in the boiler is able to substitute with biodiesel. In lower blends, there are no engine modification needed, but some researchers recommended some technical adjustments in order to maintain the boiler's performance and equipment durability. This study consists of the comparison between the performance of boiler before and after retrofitting on the use of biodiesel. The diesel oil was introduced in biodiesel blends of 10% (B10), 20% (B20) and 25% (B25). A fire tube boiler was used for the test with pressure of 3 bar and heat input capacity of 60,000 kcal. The boiler retrofit is conducted by fine tuning the fan damper scale (FDS) and adding a heating feature on fuel system. It was specifically intended to maintain the quality of combustion and boiler efficiency as well as to avoid an increase in fuel consumption. The combustion behaviour was monitored by exhaust emissions of CO, NOx, and SO2. The fan damper scale (FDS) and fuel temperature is adjusted by the increasing portion of biodiesel used. The fuel heating apparatus was set at temperature of 40oC for the use of B10, and 60oC for B20 and B25. The FDS adjustment was successfully resulted a reduction in rate of combustion air by average of 9.2%. The boiler retrofitting for the utilization of B10, B20 and B25 showed an increase in boiler efficiency by 0.64%, 0.42% and 2.6% respectively. The boiler retrofitting is surprisingly reduced the fuel consumption by average of 11.2%

    Breakdown of Water-in-Oil Emulsion on Pyrolysis Bio-Oil

    Get PDF
    The pyrolysis bio-oil which has been studied by many researchers has typically contained a high amount of water, around 20-30%. In this research, the effective bio-oil purification using chemical demulsification method has been studied to reduce the amount of water by breaking down the water-in-oil emulsion on pyrolysis bio-oil. A various dosage of chemical demulsifier (100 ppm, 150 ppm, 200 ppm, and 250 ppm) has been added into the pyrolysis bio-oil and the water separation over time also been observed. The temperature of bio-oil (30, 40, 50, 60, and 70 °C) was also studied as a factor that could have a significant effect on the demulsification process of pyrolysis bio-oil. After the injection of 250 ppm of demulsifier at 30 °C, the water separation reached a maximum of 72% in 60 minutes and could reduce the water content from 25% to 8.5%. At the temperature of 60oC and 250 ppm of demulsifier, the water separation reached a maximum of 96% in 35 minutes, and successfully reduced the water content from 25% to 1.3%. Finally, it has been concluded that this bio-crude purification using chemical demulsification method could be applied to effectively reduce the amount of water from pyrolysis bio-oil product

    Temperature Distribution of Biodiesel Blends Combustion in Boiler using CFD-Fluent

    Get PDF
    The use of biodiesel have been tested on some combustion devices extensively, including on the boiler. Biodiesel blends use in boiler is possibly affected the behaviour of combustion. It can be evaluated by analysing the exhaust gas composition and temperature. This study is conducted to show the distribution of temperature in the combustion chamber and boiler stack’s using Computational Fluid Dynamic (CFD) software Fluent. Experimentally, the tests carried out on the fire tube boiler vertical type cylinder with pressure of 3 bar. Temperature measurement is performed at three points in the combustion chamber and boilers’ stack using optional thermocouple and gas analyzer IMR 1400. The biodiesel used in the tests is palm oil based with blending portion varies from 5-25%. The results show that in the higher blend of biodiesel, the temperature of combustion chamber tend to be lower but the exhaust gas temperature at the end of the chimney was likely to increase. On the other hand, the simulation using FLUENT showed the pattern of temperature distribution was relatively equal between the use of biodiesel in the blends under 25% compared to the use of diesel (B0)

    Biogas Production from Palm Oil Mill Effluent with Indigenous Bacteria

    Get PDF
    POME or palm oil mill effluent is wastewater from the production of palm oil, which is produced by the sterilization, clarification, and hydrocyclone processes. The POME contains high carbohydrates, lipids, and protein which can contaminate the environment if it is not handled properly. The carbohydrates, lipids, and protein contained in the POME are potential for biogas production through the fermentation process with indigenous bacteria. The research aimed to study the impact of degradation time to the production of biogas in the bioreactor using the indigenous bacteria, KP1.2 (Stenotrophomonas rhizophila strain e-p10) capability from palm oil mill effluent.   The fermentation process was carried out in the anaerobic bioreactor with ranges of degradation time from 3 to 38 days to produce biogas. The bacterial population was calculated using a haemacytometer in which the number of bacteria was calculated in the small cubicles with a microscope. Biogas was saved in Tedlar bag and the biogas content was analyzed by Gas Chromatography (GC). The bacterial population increased along the fermentation period. The pH values range from 6.8 to 8.3. The highest bacterial population was 7.21 x 107 cells/mL and the lowest one was 3.15 x 107 cells/mL. The methane content, as well as, carbon dioxide content increased along the fermentation period. The highest methane content was obtained at 63.7 %moles and carbon dioxide was 22.5 %moles, while the lowest methane content was 33.5 %moles and carbon dioxide content was 19.5 %moles

    Taguchi Experiment Design for DES K2CO3-Glycerol Performance in RBDPO Transesterification

    Get PDF
    Biodiesel production using novel glycerol and potassium carbonate-based catalysts has not been developed under the Taguchi technique. This study aims to determine the most influential parameter in biodiesel production from refined bleach-deodorized palm oil (RBDPO) using DES K2CO3-Glycerol as the novel catalyst. The raw material was subjected to transesterification at the desired reaction parameters estimated by the orthogonal 16-run (L16) approach with 2 levels and 4 factors of the Taguchi technique. Signal-to-noise ratio (SNR) and ANOVA were used to confirm the predicted value. From the results, the catalyst is the most influential variable in the TG value of biodiesel, placed in the first rank of the influence factor. Biodiesel production with a minimum total glycerol value (0.210%) using DES K2CO3-Glycerol as a catalyst is most optimally produced at 95 °C for 4 h and 400 rpm using 30 wt% methanol and 4 wt% catalysts achieved by the Taguchi technique. The biodiesel obtained from RBDPO complies with the required international standards. Doi: 10.28991/ESJ-2023-07-03-018 Full Text: PD

    The Effect of H-USY Catalyst in Catalytic Cracking of Waste Cooking Oil to Produce Biofuel

    Get PDF
    The crisis in petroleum is caused by the diminishing supply of petroleum resources from nature. This phenomenon encourages researchers to continue to look for processes and methods to produce energy from other resources. One of these ways is to produce energy that can be utilized from waste, including converting waste cooking oil into biofuel. This method not only could provide a source of renewable energy, but also help resolve the issue of household waste. The process used to produce biofuel from waste cooking oil is by catalytic cracking, where waste cooking oil after pretreatment is converted into biofuel in the flow reactor with H-USY catalyst. In this research, the reaction temperatures used are 400 °C, 450 °C, 500 °C and 550 °C and reaction times are 30, 45 and 60 minutes with the mass ratio of the amount of waste cooking oil to the amount of catalyst used is 40:1 (w/w). The highest yield of liquid biofuel product was obtained at 60.98%. The use of H-USY catalyst shows that the distribution of components contained in biofuel are 28.02% of diesel products (C17 -C20), 23.96% of gasoline (C6 –C12) and 7.78% of Heavy oil (C20 >) in catalytic cracking of waste cooking oil with a reaction time of 45 minutes at a temperature of 450 °C

    Synthesis and Characterization of ZSM-5 Catalyst for Catalytic Pyrolysis of Empty Fruit Bunches

    Get PDF
    ZSM-5 is known as a heterogeneous catalyst in the process of petroleum cracking. Zeolite has narrow pores so it needs synthesis to form mesopore so that reactant molecules can enter the active site in ZSM-5 mesopore. In this study, mesopore formation was carried out by adding Si/Al components with a ratio of 20 derived from tetraethyl orthosilicate, aluminum isopropoxide and TPAOH template with hydrothermal process. The resulting ZSM-5 was characterized using x-ray diffraction, scanning and electron microscopy (SEM). The XRD characterization results showed that the ZSM-5 synthesized to form mesopore was seen from a fairly high peak intensity in the range at 2-theta were 8.11, 9.01°; 23.27°; 23.49°; and 24.13°. The results of this study already have the same structure as the commercial ZSM-5. Characterization of SEM-EDS showed that Si-Al and Na elements in ZSM-5 were 96.43%, 3.56% and 0% wt, respectively. With a magnification of 20000x, this cluster is quite homogeneous even though the crystallization formed is not well aggregated. This ZSM-5 catalyst will be applied to the process of biomass into bio-oil

    The relationship between air pollutants and COVID-19 cases and its implications for air quality in Jakarta, Indonesia

    No full text
    World Health Organization (WHO) has announced that COVID-19 as a global pandemic and public health emergency. Previous studies have revealed that COVID-19 was an infectious disease and it could remain viable in ambient air for hours. Therefore, this study aims to examine the correlation between air pollutants (PM2.5, PM10, CO, SO2, NO2 and O3) and COVID-19 spread in Jakarta, Indonesia. Furthermore, this study also evaluates the impact of large-scale social restriction (LSSR) on air pollution index (API). Result of study found that air pollution index of PM2.5, PM10, CO, SO2 and NO2 decreased by 9.48%, 15.74%, 29.17%, 6.26% and 18.34% during LSSR period. While, for O3 showed an increase by 4.06%. Another result also found significantly positive correlations of SO2, CO and PM2.5 with COVID-19 cases. An exposure to SO2, CO and PM2.5 has driven the area become vulnerable for COVID-19 infection. Our findings indicated that the relationship between air pollutants and COVID-19 spread could provide a new notion for precaution and control method of COVID-19 outbreak
    corecore