33 research outputs found

    Biochemical and histological characterization of tomato mutants

    Get PDF
    Biochemical responses inherent to antioxidant systems as well morphological and anatomical properties of photomorphogenic, hormonal and developmental tomato mutants were investigated. Compared to the non-mutant Micro-Tom (MT), we observed that the malondialdehyde (MDA) content was enhanced in the diageotropica (dgt) and lutescent (l) mutants, whilst the highest levels of hydrogen peroxide (H2O2) were observed in high pigment 1 (hp1) and aurea (au) mutants. The analyses of antioxidant enzymes revealed that all mutants exhibited reduced catalase (CAT) activity when compared to MT. Guaiacol peroxidase (GPOX) was enhanced in both sitiens (sit) and notabilis (not) mutants, whereas in not mutant there was an increase in ascorbate peroxidase (APX). Based on PAGE analysis, the activities of glutathione reductase (GR) isoforms III, IV, V and VI were increased in l leaves, while the activity of superoxide dismutase (SOD) isoform III was reduced in leaves of sit, epi, Never ripe (Nr) and green flesh (gf) mutants. Microscopic analyses revealed that hp1 and au showed an increase in leaf intercellular spaces, whereas sit exhibited a decrease. The au and hp1 mutants also exhibited a decreased in the number of leaf trichomes. The characterization of these mutants is essential for their future use in plant development and ecophysiology studies, such as abiotic and biotic stresses on the oxidative metabolism

    LES CRISES NON EPILEPTIQUES CHEZ LES ENFANTS EPILEPTIQUES

    No full text
    RENNES1-BU Santé (352382103) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Agénésie du septum pellucidum isolée de découverte périnatale (étude multicentrique sur le devenir clinique des enfants suivis)

    No full text
    RENNES1-BU Santé (352382103) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    From Negative to Positive Diagnosis: Structural Variation Could Be the Second Mutation You Are Looking for in a Recessive Autosomal Gene

    No full text
    Next-generation sequencing (NGS) allows the detection of plentiful mutations increasing the rate of patients getting a positive diagnosis. However, while single-nucleotide variants (SNVs) or small indels can be easily detected, structural variations (SVs) such as copy number variants (CNVs) are often not researched. In Charcot–Marie–Tooth disease (CMT), the most common hereditary peripheral neuropathy, the PMP22-duplication was the first variation detected. Since then, more than 90 other genes have been associated with CMT, with point mutations or small indels mostly described. Herein, we present a personalized approach we performed to obtain a positive diagnosis of a patient suffering from demyelinating CMT. His NGS data were aligned to the human reference sequence but also studied using the CovCopCan software, designed to detect large CNVs. This approach allowed the detection of only one mutation in SH3TC2, the frequent p.Arg954*, while SH3TC2 is known to be responsible for autosomal recessive demyelinating CMT forms. Interestingly, by modifying the standard CovCopCan use, we detected the second mutation of this patient corresponding to a 922 bp deletion in SH3TC2 (Chr5:148,390,609-Chr5:148,389,687), including only one exon (exon 14). This highlights that SVs, different from PMP22 duplication, can be responsible for peripheral neuropathy and should be searched systematically. This approach could also be employed to improve the diagnosis of all inherited diseases

    Multimodal Outcome at 7 Years of Age after Neonatal Arterial Ischemic Stroke

    No full text
    To evaluate the epileptic, academic, and developmental status at age 7 years in a large population of term-born children who sustained neonatal arterial ischemic stroke (NAIS), and to assess the co-occurrence of these outcomes
    corecore