1,174 research outputs found

    When Consumers Diet, Should Producers Care? An Examination of Low-Carb Dieting and U.S. Orange Juice Consumption

    Get PDF
    From 2000 through 2004, per-capita orange juice purchases decreased by 12.3 percent in the United States, while the popularity and media coverage of low-carbohydrate dieting exploded. Content analysis was used to count selected newspaper articles topically related to low-carbohydrate dieting, the Atkins diet, and the South Beach diet. These data were included in a national orange juice demand model, where purchase data served as the independent variable and proxy for consumer demand of orange juice. Results indicate that media coverage of low-carbohydrate diets and dieting was negatively and significantly related to demand for orange juice in the United States.Food Consumption/Nutrition/Food Safety,

    CHANGING PATTERNS OF ORANGE JUICE CONSUMPTION IN THE SOUTHERN UNITED STATES

    Get PDF
    From 2000 through 2004, per capita orange juice purchases decreased by 12.3 percent while the popularity and media coverage of low-carbohydrate dieting exploded. Content analysis was used to count selected Southern region newspaper articles topically related to low-carbohydrate dieting, the Atkins diet, and the South Beach diet. This data was included in a Southern region orange juice demand model, where purchase data served as the independent variable and proxy for consumer demand of orange juice. Results indicated that media coverage of low-carbohydrate diets and dieting was negatively and significantly related to demand for orange juice in the Southern region.Food Consumption/Nutrition/Food Safety,

    13.4.18. Chufa Biology and Management

    Get PDF
    Chufa (Cyperus esculentus) is an emergent perennial sedge that is common in seasonally flooded wetlands. Although chufa is common in many States, it is most abundant in the Southeast, including the Mississippi alluvial valley (Fig. 1). Belowground biomass of chufa, especially the tubers, serves as a valuable food source for waterfowl and cranes. Chufa tubers rank tenth among the most important waterfowl foods in the United States

    13.4.18. Chufa Biology and Management

    Get PDF
    Chufa (Cyperus esculentus) is an emergent perennial sedge that is common in seasonally flooded wetlands. Although chufa is common in many States, it is most abundant in the Southeast, including the Mississippi alluvial valley (Fig. 1). Belowground biomass of chufa, especially the tubers, serves as a valuable food source for waterfowl and cranes. Chufa tubers rank tenth among the most important waterfowl foods in the United States

    On Interaction Classification

    Full text link
    Further classification is made of Lindquist's dichotomy of inter action effects. The extension hopefully reduces errors of inter pretation and provides a simple, accurate means of summarizing in teractions obtained.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67338/2/10.1177_001316448004000405.pd

    Virulence related sequences: insights provided by comparative genomics of Streptococcus uberis of differing virulence

    Get PDF
    Background: Streptococcus uberis, a Gram-positive, catalase-negative member of the family Streptococcaceae is an important environmental pathogen responsible for a significant proportion of subclinical and clinical bovine intramammary infections. Currently, the genome of only a single reference strain (0140J) has been described. Here we present a comparative analysis of complete draft genome sequences of an additional twelve S. uberis strains. Results: Pan and core genome analysis revealed the core genome common to all strains to be 1,550 genes in 1,509 orthologous clusters, complemented by 115-246 accessory genes present in one or more S. uberis strains but absent in the reference strain 0140J. Most of the previously predicted virulent genes were present in the core genome of all 13 strains but gene gain/loss was observed between the isolates in CDS associated with clustered regularly interspaced short palindromic repeats (CRISPRs), prophage and bacteriocin production. Experimental challenge experiments confirmed strain EF20 as non-virulent; only able to infect in a transient manner that did not result in clinical mastitis. Comparison of the genome sequence of EF20 with the validated virulent strain 0140J identified genes associated with virulence, however these did not relate clearly with clinical/non-clinical status of infection. Conclusion: The gain/loss of mobile genetic elements such as CRISPRs and prophage are a potential driving force for evolutionary change. This first “whole-genome” comparison of strains isolated from clinical vs non-clinical intramammary infections including the type virulent vs non-virulent strains did not identify simple gene gain/loss rules that readily explain, or be confidently associated with, differences in virulence. This suggests that a more complex dynamic determines infection potential and clinical outcome not simply gene content

    Latitudinal Variations in Methane Abundance, Aerosol Opacity and Aerosol Scattering Efficiency in Neptune's Atmosphere Determined From VLT/MUSE

    Get PDF
    Spectral observations of Neptune made in 2019 with the Multi Unit Spectroscopic Explorer (MUSE) instrument at the Very Large Telescope (VLT) in Chile have been analyzed to determine the spatial variation of aerosol scattering properties and methane abundance in Neptune's atmosphere. The darkening of the South Polar Wave at ∼60°S, and dark spots such as the Voyager 2 Great Dark Spot is concluded to be due to a spectrally dependent darkening (λ 650 nm. We find the properties of an overlying methane/haze aerosol layer at ∼2 bar are, to first-order, invariant with latitude, while variations in the opacity of an upper tropospheric haze layer reproduce the observed reflectivity at methane-absorbing wavelengths, with higher abundances found at the equator and also in a narrow “zone” at 80°S. Finally, we find the mean abundance of methane below its condensation level to be 6%–7% at the equator reducing to ∼3% south of ∼25°S, although the absolute abundances are model dependent.We are grateful to the United Kingdom Science and Technology Facilities Council for funding this research (Irwin: ST/S000461/1, Teanby: ST/R000980/1). Glenn Orton was supported by funding to the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). Leigh Fletcher and Mike Roman were supported by a European Research Council Consolidator Grant (under the European Union's Horizon 2020 research and innovation programme, grant agreement no. 723890) at the University of Leicester. Santiago Pérez-Hoyos and Agustin Sánchez-Lavega are supported by the Spanish project PID2019-109467GB-I00 (MINECO/FEDER, UE), Elkartek21/87 KK-2021/00061 and Grupos Gobierno Vasco IT-1742-22

    Spectral determination of the colour and vertical structure of dark spots in Neptune's atmosphere

    Full text link
    Previous observations of dark vortices in Neptune's atmosphere, such as Voyager-2's Great Dark Spot, have been made in only a few, broad-wavelength channels, which has hampered efforts to pinpoint their pressure level and what makes them dark. Here, we present Very Large Telescope (Chile) MUSE spectrometer observations of Hubble Space Telescope's NDS-2018 dark spot, made in 2019. These medium-resolution 475 - 933 nm reflection spectra allow us to show that dark spots are caused by a darkening at short wavelengths (< 700 nm) of a deep ~5-bar aerosol layer, which we suggest is the H2_2S condensation layer. A deep bright spot, named DBS-2019, is also visible on the edge of NDS-2018, whose spectral signature is consistent with a brightening of the same 5-bar layer at longer wavelengths (> 700 nm). This bright feature is much deeper than previously studied dark spot companion clouds and may be connected with the circulation that generates and sustains such spots.Comment: 1 table. 3 figures. Nature Astronomy (2023

    The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs

    Full text link
    The Coma cluster was the target of a HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in 2007, the partially completed survey still covers ~50% of the core high-density region in Coma. Observations were performed for 25 fields that extend over a wide range of cluster-centric radii (~1.75 Mpc) with a total coverage area of 274 arcmin^2. The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the south-west region of the cluster. In this paper we present reprocessed images and SExtractor source catalogs for our survey fields, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SExtractor Kron magnitudes based only on the measured source flux and half-light radius. We have performed photometry for ~73,000 unique objects; one-half of our detections are brighter than the 10-sigma point-source detection limit at F814W=25.8 mag (AB). The slight majority of objects (60%) are unresolved or only marginally resolved by ACS. We estimate that Coma members are 5-10% of all source detections, which consist of a large population of unresolved objects (primarily GCs but also UCDs) and a wide variety of extended galaxies from a cD galaxy to dwarf LSB galaxies. The red sequence of Coma member galaxies has a constant slope and dispersion across 9 magnitudes (-21<M_F814W<-13). The initial data release for the HST-ACS Coma Treasury program was made available to the public in 2008 August. The images and catalogs described in this study relate to our second data release.Comment: Accepted for publication in ApJS. A high-resolution version is available at http://archdev.stsci.edu/pub/hlsp/coma/release2/PaperII.pd
    corecore