735 research outputs found
Constraining the Atmospheric Composition of the Day-Night Terminators of HD 189733b : Atmospheric Retrieval with Aerosols
A number of observations have shown that Rayleigh scattering by aerosols
dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1
m. In this study, we retrieve a range of aerosol distributions consistent
with transmission spectroscopy between 0.3-24 m that were recently
re-analyzed by Pont et al. (2013). To constrain the particle size and the
optical depth of the aerosol layer, we investigate the degeneracies between
aerosol composition, temperature, planetary radius, and molecular abundances
that prevent unique solutions for transit spectroscopy. Assuming that the
aerosol is composed of MgSiO, we suggest that a vertically uniform aerosol
layer over all pressures with a monodisperse particle size smaller than about
0.1 m and an optical depth in the range 0.002-0.02 at 1 m provides
statistically meaningful solutions for the day/night terminator regions of HD
189733b. Generally, we find that a uniform aerosol layer provide adequate fits
to the data if the optical depth is less than 0.1 and the particle size is
smaller than 0.1 m, irrespective of the atmospheric temperature, planetary
radius, aerosol composition, and gaseous molecules. Strong constraints on the
aerosol properties are provided by spectra at wavelengths shortward of 1 m
as well as longward of 8 m, if the aerosol material has absorption
features in this region. We show that these are the optimal wavelengths for
quantifying the effects of aerosols, which may guide the design of future space
observations. The present investigation indicates that the current data offer
sufficient information to constrain some of the aerosol properties of
HD189733b, but the chemistry in the terminator regions remains uncertain.Comment: Transferred to ApJ and accepted. 11 pages, 10 figures, 1 tabl
Language Attitudes [Linguistics]
This scaffolded assignment in two parts aims to engage students with the topic of how language and society are related. Framed by the global learning core competency and written ability in its entirety, Part I asks students to focus on their own language/dialect or variety and consider the kinds of attitudes that exist towards students’ language/dialect. Part II asks students to choose a language /dialect they are not familiar with and research the attitudes that exist about that language/dialect.
LaGuardia’s Core Competencies and Communication Abilities
Main Course Learning Objectives:
Explain ways in which language and society are relate
Seasonal Variability of Saturn's Tropospheric Temperatures, Winds and Para-H from Cassini Far-IR Spectroscopy
Far-IR 16-1000 m spectra of Saturn's hydrogen-helium continuum measured
by Cassini's Composite Infrared Spectrometer (CIRS) are inverted to construct a
near-continuous record of upper tropospheric (70-700 mbar) temperatures and
para-H fraction as a function of latitude, pressure and time for a third of
a Saturnian year (2004-2014, from northern winter to northern spring). The
thermal field reveals evidence of reversing summertime asymmetries superimposed
onto the belt/zone structure. The temperature structure that is almost
symmetric about the equator by 2014, with seasonal lag times that increase with
depth and are qualitatively consistent with radiative climate models. Localised
heating of the tropospheric hazes (100-250 mbar) create a distinct perturbation
to the temperature profile that shifts in magnitude and location, declining in
the autumn hemisphere and growing in the spring. Changes in the para-H
() distribution are subtle, with a 0.02-0.03 rise over the spring
hemisphere (200-500 mbar) perturbed by (i) low- air advected by both the
springtime storm of 2010 and equatorial upwelling; and (ii) subsidence of
high- air at northern high latitudes, responsible for a developing
north-south asymmetry in . Conversely, the shifting asymmetry in the
para-H disequilibrium primarily reflects the changing temperature structure
(and the equilibrium distribution of ), rather than actual changes in
induced by chemical conversion or transport. CIRS results interpolated to
the same point in the seasonal cycle as re-analysed Voyager-1 observations show
qualitative consistency, with the exception of the tropical tropopause near the
equatorial zones and belts, where downward propagation of a cool temperature
anomaly associated with Saturn's stratospheric oscillation could potentially
perturb tropopause temperatures, para-H and winds. [ABRIDGED]Comment: Preprint accepted for publication in Icarus, 29 pages, 18 figure
On the potential of the EChO mission to characterise gas giant atmospheres
Space telescopes such as EChO (Exoplanet Characterisation Observatory) and
JWST (James Webb Space Telescope) will be important for the future study of
extrasolar planet atmospheres. Both of these missions are capable of performing
high sensitivity spectroscopic measurements at moderate resolutions in the
visible and infrared, which will allow the characterisation of atmospheric
properties using primary and secondary transit spectroscopy. We use the NEMESIS
radiative transfer and retrieval tool (Irwin et al. 2008, Lee et al. 2012) to
explore the potential of the proposed EChO mission to solve the retrieval
problem for a range of H2-He planets orbiting different stars. We find that
EChO should be capable of retrieving temperature structure to ~200 K precision
and detecting H2O, CO2 and CH4 from a single eclipse measurement for a hot
Jupiter orbiting a Sun-like star and a hot Neptune orbiting an M star, also
providing upper limits on CO and NH3. We provide a table of retrieval
precisions for these quantities in each test case. We expect around 30
Jupiter-sized planets to be observable by EChO; hot Neptunes orbiting M dwarfs
are rarer, but we anticipate observations of at least one similar planet.Comment: 22 pages, 30 figures, 4 tables. Accepted for publication in MNRA
New insights on Saturn's formation from its nitrogen isotopic composition
The recent derivation of a lower limit for the N/N ratio in
Saturn's ammonia, which is found to be consistent with the Jovian value,
prompted us to revise models of Saturn's formation using as constraints the
supersolar abundances of heavy elements measured in its atmosphere. Here we
find that it is possible to account for both Saturn's chemical and isotopic
compositions if one assumes the formation of its building blocks at 45 K
in the protosolar nebula, provided that the O abundance was 2.6 times
protosolar in its feeding zone. To do so, we used a statistical thermodynamic
model to investigate the composition of the clathrate phase that formed during
the cooling of the protosolar nebula and from which the building blocks of
Saturn were agglomerated. We find that Saturn's O/H is at least 34.9
times protosolar and that the corresponding mass of heavy elements (43.1
\Mearth) is within the range predicted by semi-convective interior models.Comment: Accepted for publication in Astrophysical Journal Letter
Exoplanet atmospheres with EChO: spectral retrievals using EChOSim
We demonstrate the effectiveness of the Exoplanet Characterisation
Observatory mission concept for constraining the atmospheric properties of hot
and warm gas giants and super Earths. Synthetic primary and secondary transit
spectra for a range of planets are passed through EChOSim (Waldmann & Pascale
2014) to obtain the expected level of noise for different observational
scenarios; these are then used as inputs for the NEMESIS atmospheric retrieval
code and the retrieved atmospheric properties (temperature structure,
composition and cloud properties) compared with the known input values,
following the method of Barstow et al. (2013a). To correctly retrieve the
temperature structure and composition of the atmosphere to within 2 {\sigma},
we find that we require: a single transit or eclipse of a hot Jupiter orbiting
a sun-like (G2) star at 35 pc to constrain the terminator and dayside
atmospheres; 20 transits or eclipses of a warm Jupiter orbiting a similar star;
10 transits/eclipses of a hot Neptune orbiting an M dwarf at 6 pc; and 30
transits or eclipses of a GJ1214b-like planet.Comment: 13 pages, 15 figures, 1 table. Accepted by Experimental Astronomy.
The final publication will shortly be available at Springer via
http://dx.doi.org/10.1007/s10686-014-9397-
Neptune at Summer Solstice: Zonal Mean Temperatures from Ground-Based Observations 2003-2007
Imaging and spectroscopy of Neptune's thermal infrared emission is used to
assess seasonal changes in Neptune's zonal mean temperatures between Voyager-2
observations (1989, heliocentric longitude Ls=236) and southern summer solstice
(2005, Ls=270). Our aim was to analyse imaging and spectroscopy from multiple
different sources using a single self-consistent radiative-transfer model to
assess the magnitude of seasonal variability. Globally-averaged stratospheric
temperatures measured from methane emission tend towards a quasi-isothermal
structure (158-164 K) above the 0.1-mbar level, and are found to be consistent
with spacecraft observations of AKARI. This remarkable consistency, despite
very different observing conditions, suggests that stratospheric temporal
variability, if present, is 5 K at 1 mbar and 3 K at 0.1 mbar during
this solstice period. Conversely, ethane emission is highly variable, with
abundance determinations varying by more than a factor of two. The retrieved
C2H6 abundances are extremely sensitive to the details of the T(p) derivation.
Stratospheric temperatures and ethane are found to be latitudinally uniform
away from the south pole (assuming a latitudinally-uniform distribution of
stratospheric methane). At low and midlatitudes, comparisons of synthetic
Voyager-era images with solstice-era observations suggest that tropospheric
zonal temperatures are unchanged since the Voyager 2 encounter, with cool
mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50
{\mu}m mapping of tropospheric temperatures and para-hydrogen disequilibrium
suggests a symmetric meridional circulation with cold air rising at
mid-latitudes (sub-equilibrium para-H2 conditions) and warm air sinking at the
equator and poles (super-equilibrium para-H2 conditions). The most significant
atmospheric changes are associated with the polar vortex (absent in 1989).Comment: 35 pages, 19 figures. Accepted for publication in Icaru
- …