12 research outputs found

    Management by Trajectory Trade Study of Roles and Responsibilities Between Participants and Automation Report

    Get PDF
    This report describes a trade study of roles and responsibilities associated with the Management by Trajectory (MBT) concept. The MBT concept describes roles, responsibilities, and information and automation requirements for providing air traffic controllers and managers the ability to quickly generate, evaluate and implement changes to an aircraft's trajectory. In addition, the MBT concept describes mechanisms for imposing constraints on flight operator preferred trajectories only to the extent necessary to maintain safe and efficient traffic flows, and the concept provides a method for the exchange of trajectory information between ground automation systems and the aircraft that allows for trajectory synchronization and trajectory negotiation. The participant roles considered in this trade study include: airline dispatcher, flight crew, radar controller, traffic manager, and Air Traffic Control System Command Center (ATCSCC) traffic management specialists. The proposed allocation of roles and responsibilities was based on analysis of several use cases that were developed for this purpose as well as for walking through concept elements. The resulting allocation of roles and responsibilities reflects both increased automation capability to support many aviation functions, as well as increased flexibility to assign responsibilities to different participants - in many cases afforded by the increased automation capabilities. Note that the selection of participants to consider for allocation of each function is necessarily rooted in the current environment, in that MBT is envisioned as an evolution of the National Airspace System (NAS), and not a revolution. A key feature of the MBT allocations is a vision for the traffic management specialist to take on a greater role. This is facilitated by the vision that separation management functions, in addition to traffic management functions, will be carried out as trajectory management functions. This creates an opportunity for flexibility, allowing the traffic management specialist to carry out tasks that today can only be carried out by the controller currently in contact with the aircraft. This additional tasking for the traffic management specialist comes with requirements for workload management. An increased role for the Data-side (D-side) controller relative to the Radar-side (R-side) controller is a potential approach to mitigating workload for the traffic management specialist, as the D-side controller would have similar ability to perform separation management functions in what today might be considered the "trajectory management" timeframe. This analysis did not distinguish between the D-side and R-side controllers since in many cases the R-side controller works unassisted

    Management by Trajectory: Trajectory Management Study Report

    Get PDF
    In order to realize the full potential of the Next Generation Air Transportation System (NextGen), improved management along planned trajectories between air navigation service providers (ANSPs) and system users (e.g., pilots and airline dispatchers) is needed. Future automation improvements and increased data communications between aircraft and ground automation would make the concept of Management by Trajectory (MBT) possible

    Concept of Operations for Management by Trajectory

    Get PDF
    This document describes Management by Trajectory (MBT), a concept for future air traffic management (ATM) in which every flight operates in accordance with a four-dimensional trajectory (4DT) that is negotiated between the airspace user and the Federal Aviation Administration (FAA) to respect the airspace user's goals while complying with National Airspace System (NAS) constraints. In the present-day NAS, the ATM system attempts to predict the trajectory for each flight based on the approved flight plan and scheduled or controlled departure time. However, once the aircraft starts to move, controllers tactically manage the aircraft to implement traffic management restrictions, separate otherwise conflicting aircraft, and address arising NAS constraints. Tactical controller actions are not directly communicated to the automation systems or other stakeholders. Furthermore, the initial trajectory prediction does not anticipate these disruptions or how they will impact the flight. Consequently, and compounded by gaps in required data and models, trajectory predictions are less accurate than possible, which affects Traffic Flow Management (TFM) performance. A cornerstone of the MBT concept is that all air vehicles have, at all times, an assigned 4DT from their current state to their destination. These assigned trajectories consist of trajectory constraints and descriptions. Pilots and air traffic controllers, with the aid of automation, operate the aircraft to comply with the assigned trajectory, unless first negotiating a revision. Equipped aircraft have substantial responsibility for complying with the assigned trajectory without controller intervention. To maximize the operational flexibility available to the airspace user, the assigned trajectory only imposes trajectory constraints as required to achieve the ATM goals of NAS constraint compliance and aircraft separation. Trajectory descriptions are added to the assigned trajectory to ensure sufficient predictability. To further improve trajectory prediction accuracy, airspace users supplement the assigned trajectory by broadcasting intent information and updating it as necessary. Air vehicle intent is a more detailed description of the airspace user's plan for how the flight will fly the assigned trajectory. Air vehicle intent can change freely, without negotiation, as long as it remains in compliance with the assigned trajectory. Aircraft assigned trajectories, air vehicle intent, and predicted trajectories are shared, creating a common view among stakeholders. A NAS Constraint Service gathers and publishes information about all known NAS constraints, enabling airspace users to be informed participants in trajectory negotiation. Trajectory constraints in the assigned trajectory are mapped to NAS constraints to facilitate identifying which aircraft are affected when NAS constraints change. To support efficient trajectory negotiation, all aircraft provide current information about air vehicle capabilities. Assigned trajectories are constructed to satisfy all known NAS constraints, improving trajectory stability and predictability. Uncertainty and disruptions are handled by modifying the assigned trajectory as far in advance as possible. By proactively negotiating changes to the assigned trajectory, rather than relying on controller-selected tactical actions such as vectors to resolve traffic conflicts or implement miles-in-trail restrictions, MBT keeps aircraft on closed trajectories that are fully known to all stakeholders. Since reactive air traffic control actions cannot be predicted in advance, the downstream trajectory cannot be accurately predicted until they happen. Reliable trajectory predictions allow the system to identify needed modifications to trajectories further in advance, where they can be negotiated and communicated as amendments (i.e., additional or altered trajectory constraints) to the assigned trajectory. Decision Support Tools (DSTs) aid controllers in rapidly defining and communicating closed trajectories to the aircraft and support all stakeholders in trajectory negotiation. Anticipated MBT benefit mechanisms include more accurate trajectory predictions, improved ATM performance and robustness to off-nominal conditions, increased flexibility and operational efficiency, reduced impediments to emerging classes of airspace users accessing NAS resources, reduced environmental impacts, and enhanced safety

    Initial Implications of Automation on Dynamic Airspace Configuration

    No full text
    The dynamic airspace configuration concept strives to remove today’s rigid structure of navigation aids, airways, pre-defined sectors of airspace, and special-use airspace to provide traffic managers with more flexibility to reconfigure airspace to address convective weather and meet fluctuations in user demand. The impact of increasing levels of air traffic management automation on controller workload and airspace capacity is analyzed. The automation levels represent a current operations baseline; seamless, integrated datalink operations; and automated airspace operations in which separation, merging and spacing guidance is provided for 33,000 ft and above without human controller involvement. Denver Center traffic and airspace for a good weather day are modeled to predict the effect of increased controller productivity on airspace configuration strategies. Results indicate that integrated datalink operations enable the high and low altitude feeder sectors for Denver arrivals to be combined into a single sector for the selected traffic demand, facilitating more uninterrupted descents than possible under current operations. Furthermore, results indicate automated airspace operations enable a single en route sector team to manage airspace below 33,000 ft that is a combination of 5 of today’s sectors

    Additional file 2 of Breast cancer risks associated with missense variants in breast cancer susceptibility genes

    No full text
    Additional file 2

    Additional file 1: of Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6

    No full text
    Table S1. Cohort characteristics. Table S2. Single SNP meta-analyses. Table S3. Sex-stratified analyses. Table S4. SKAT analyses. Table S5. T1-burden analyses. Table S6. ADAMTS6 variant details. Table S7. Cardiac phenotype distribution in Adamts6 mutant mice. (XLSX 475 kb
    corecore