97 research outputs found

    The reconstruction of Ni and Rh (001) surfaces upon Carbon, Nitrogen, or Oxygen adsorption

    Full text link
    Nickel and Rhodium (001) surfaces display a similar - as from STM images - clock reconstruction when half a monolayer of C/Ni, N/Ni or O/Rh is adsorbed; no reconstruction is observed instead for O/Ni. Adsorbate atoms sit at the center of the black squares of a chess-board, c(2×2)c(2\times 2), pattern and two different reconstructions are actually compatible with the observed STM images - showing a (2×2)p4g(2\times 2)p4g pattern - according to whether a rotation of the black or white squares occurs. We report on a first - principles study of the structure of X/Ni(001) and X/Rh(001) surfaces (X=C,N,O) at half a monolayer coverage, performed using density-functional theory. Our findings are in agreement with all available experimental information and shed new light on the mechanisms responsible for the reconstructions. We show that the same substrate may display different reconstructions - or no reconstruction - upon adsorption of different atomic species, depending on the relative importance of the chemical and steric factors which determine the reconstruction.Comment: 18 pages, 5 figure

    The surface chemistry of metal-oxygen interactions: a first-principles study of O:Rh(110)

    Full text link
    We report on a computational study of the clean and oxygen-covered Rh(110) surface, based on density-functional theory within the local-density approximation. We have used plane-wave basis sets and Vanderbilt ultra-soft pseudopotentials. For the clean surface, we present results for the equilibrium structure, surface energy, and surface stress of the unreconstructed and (1×2)(1\times 2) reconstructed structures. For the oxygen-covered surface we have performed a geometry optimization at 121\over 2, 1, and 2 monolayer oxygen coverages, and we present results for the equilibrium configurations, workfunctions and oxygen chemisorption energies. At half monolayer coverage, we find that oxygen induces a (1×2)(1\times 2) reconstruction of the surface, while at one monolayer coverage the chemisorption energy is highest for the unreconstructed surface. Our results are rationalized by a simple tight-binding description of the interaction between the O2p-2p orbitals and the metal valence states. The resulting bonds are stronger when established with low coordinated metal atoms, and give rise to an effective adsorbate-adsorbate interaction when two oxygen atoms are bound to the same metal orbital.Comment: 23 pages, REVTEX, 8 figure

    Surface oxidation of liquid Sn

    Full text link
    We report the results of an x-ray scattering study that reveals oxidation kinetics and formation of a previously unreported crystalline phase of SnO at the liquid-vapour interface of Sn. Our experiments reveal that the pure liquid Sn surface does not react with molecular oxygen below an activation pressure of \~5.0*10-6 Torr. Above that pressure a rough solid Sn oxide grows over the liquid metal surface. Once the activation pressure has been exceeded the oxidation proceeds at pressures below the oxidation pressure threshold. The observed diffraction pattern associated with the surface oxidation does not match any of the known Sn oxide phases. The data have an explicit signature of the face-centred cubic structure, however it requires lattice parameters that are about 9% smaller than those reported for cubic structures of high-pressure phases of Sn oxides. Keywords: X-ray scattering, diffraction, and reflection; Oxidation; Surface chemical reaction; Surface structure, morphology, roughness, and topography; Tin; Tin oxides; Liquid surfaces; Polycrystalline thin filmsComment: 18 pages, 6 figures, 1 table; Submitted to Surface Scienc

    Self-organization of (001) cubic crystal surfaces

    Full text link
    Self-organization on crystal surface is studied as a two dimensional spinodal decomposition in presence of a surface stress. The elastic Green function is calculated for a (001)(001) cubic crystal surface taking into account the crystal anisotropy. Numerical calculations show that the phase separation is driven by the interplay between domain boundary energy and long range elastic interactions. At late stage of the phase separation process, a steady state appears with different nanometric patterns according to the surface coverage and the crystal elastic constants

    The role of magnetic anisotropy in the Kondo effect

    Get PDF
    In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment's energy on the orientation of the spin relative to its surrounding atomic environment. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.Comment: 14 pages, 4 figures, published in Nature Physic

    Effects of boundary conditions on magnetization switching in kinetic Ising models of nanoscale ferromagnets

    Full text link
    Magnetization switching in highly anisotropic single-domain ferromagnets has been previously shown to be qualitatively described by the droplet theory of metastable decay and simulations of two-dimensional kinetic Ising systems with periodic boundary conditions. In this article we consider the effects of boundary conditions on the switching phenomena. A rich range of behaviors is predicted by droplet theory: the specific mechanism by which switching occurs depends on the structure of the boundary, the particle size, the temperature, and the strength of the applied field. The theory predicts the existence of a peak in the switching field as a function of system size in both systems with periodic boundary conditions and in systems with boundaries. The size of the peak is strongly dependent on the boundary effects. It is generally reduced by open boundary conditions, and in some cases it disappears if the boundaries are too favorable towards nucleation. However, we also demonstrate conditions under which the peak remains discernible. This peak arises as a purely dynamic effect and is not related to the possible existence of multiple domains. We illustrate the predictions of droplet theory by Monte Carlo simulations of two-dimensional Ising systems with various system shapes and boundary conditions.Comment: RevTex, 48 pages, 13 figure

    Atomic spin chain realization of a model for quantum criticality

    Get PDF
    The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be used as fundamental building blocks for the realization of textbook many-body quantum models, illustrating key concepts such as quantum phase transitions, topological order or frustration. Step-by-step assembly promises an interesting handle on the emergence of quantum collective behavior as one goes from one, to few, to many constituents. To achieve this, one must however maintain the ability to tune and measure local properties as the system size increases. Here, we use low-temperature scanning tunneling microscopy to construct arrays of magnetic atoms on a surface, designed to behave like spin-1/2 XXZ Heisenberg chains in a transverse field, for which a quantum phase transition from an antiferromagnetic to a paramagnetic phase is predicted in the thermodynamic limit. Site-resolved measurements on these finite size realizations reveal a number of sudden ground state changes when the field approaches the critical value, each corresponding to a new domain wall entering the chains. We observe that these state crossings become closer for longer chains, indicating the onset of critical behavior. Our results present opportunities for further studies on quantum behavior of many-body systems, as a function of their size and structural complexity.Comment: published online on 18 Apr 2016 in Nature Physic

    One-dimensional nanoclustering of the Cu(100) surface under CO gas in the mbar pressure range

    Get PDF
    The bulk terminated Cu(100) surface becomes unstable in the presence of CO at room temperature when the pressure reaches thembar range. Scanning tunneling microscopy images showthat above 0.25mbar the surface forms nanoclusters with CO attached to peripheral Cu atoms. At 20 mbar and above 3-atom wide one- dimensional nanoclusters parallel to b001N directions cover the surface,with CO on every Cu atom, increasing in density up to 115 mbar. Density functional theory explains the findings as a result of the detachment of Cu atoms fromstep edges caused by the stronger binding of CO relative to that on flat terraces
    corecore